Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The molecular mechanisms underlying pressure-induced protein denaturation can be analyzed based on the pressure-dependent differences in the apparent volume occupied by amino acids inside the protein and when exposed to water in an unfolded conformation. This chapter presents a volumetric analysis of the peptide group and the 20 naturally occurring amino acid side chains in the interior of the native state, the micelle-like interior of the pressure-induced denatured state, and in the unfolded conformation modeled by low-molecular analogs of proteins. The transfer of a peptide group from the protein interior to water becomes increasingly favorable as pressure increases. This observation classifies solvation of peptide groups as a major driving force in pressure-induced protein denaturation. Polar side chains do not appear to exhibit significant pressure-dependent changes in their preference for the protein interior or solvent. The transfer of nonpolar side chains from the protein interior to water becomes more unfavorable as pressure increases. An inference can be drawn that a sizeable population of nonpolar side chains remains buried inside a solvent-inaccessible core of the pressure-induced denatured state. At elevated pressures this core, owing to the absence of structural constraints, may become packed almost as tightly as the interior of the native state. The presence and partial disappearance of large intraglobular voids is another driving force facilitating pressure-induced protein denaturation. Volumetric data presented here have implications for the kinetics of protein folding and shed light on the nature of the folding transition state ensembles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-94-017-9918-8_3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!