Distinct Roles for Intestinal Epithelial Cell-Specific Hdac1 and Hdac2 in the Regulation of Murine Intestinal Homeostasis.

J Cell Physiol

Département d'anatomie et biologie cellulaire, Pavillon de recherche appliquée sur le cancer, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.

Published: February 2016

The intestinal epithelium responds to and transmits signals from the microbiota and the mucosal immune system to insure intestinal homeostasis. These interactions are in part conveyed by epigenetic modifications, which respond to environmental changes. Protein acetylation is an epigenetic signal regulated by histone deacetylases, including Hdac1 and Hdac2. We have previously shown that villin-Cre-inducible intestinal epithelial cell (IEC)-specific Hdac1 and Hdac2 deletions disturb intestinal homeostasis. To determine the role of Hdac1 and Hdac2 in the regulation of IEC function and the establishment of the dual knockout phenotype, we have generated villin-Cre murine models expressing one Hdac1 allele without Hdac2, or one Hdac2 allele without Hdac1. We have also investigated the effect of short-term deletion of both genes in naphtoflavone-inducible Ah-Cre and tamoxifen-inducible villin-Cre(ER) mice. Mice with one Hdac1 allele displayed normal tissue architecture, but increased sensitivity to DSS-induced colitis. In contrast, mice with one Hdac2 allele displayed intestinal architecture defects, increased proliferation, decreased goblet cell numbers as opposed to Paneth cells, increased immune cell infiltration associated with fibrosis, and increased sensitivity to DSS-induced colitis. In comparison to dual knockout mice, intermediary activation of Notch, mTOR, and Stat3 signaling pathways was observed. While villin-Cre(ER) Hdac1 and Hdac2 deletions led to an impaired epithelium and differentiation defects, Ah-Cre-mediated deletion resulted in blunted proliferation associated with the induction of a DNA damage response. Our results suggest that IEC determination and intestinal homeostasis are highly dependent on Hdac1 and Hdac2 activity levels, and that changes in the IEC acetylome may alter the mucosal environment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.25090DOI Listing

Publication Analysis

Top Keywords

hdac1 hdac2
24
intestinal homeostasis
16
hdac1
9
hdac2
9
intestinal
8
intestinal epithelial
8
hdac2 regulation
8
hdac2 deletions
8
dual knockout
8
hdac1 allele
8

Similar Publications

Background: Rheumatoid arthritis (RA) is a degenerative autoimmune disease, often managed through symptomatic treatment. The co-occurrence of the reported extra-articular comorbidities such as inflammatory bowel disease (IBD), and dementia may complicate the pathology of the disease as well as the treatment strategies. Therefore, in our study, we aim to elucidate the key genes, and regulatory elements implicated in the progression and association of these diseases, thereby highlighting the linked potential therapeutic targets.

View Article and Find Full Text PDF

Post-translational modifications of histone H3 on lysine 9, specifically acetylation (H3K9ac) and tri-methylation (H3K9me3), play a critical role in regulating chromatin accessibility. However, the role of these modifications in lineage segregation in the mammalian blastocyst remains poorly understood. We demonstrate that di- and tri-methylation marks, H3K9me2 and H3K9me3, decrease during cavitation and expansion of the rabbit blastocyst.

View Article and Find Full Text PDF

Sleep deprivation affects pain sensitivity by increasing oxidative stress and apoptosis in the medial prefrontal cortex of rats via the HDAC2-NRF2 pathway.

Biomed J

January 2025

Department of Anesthesiology, Perioperative and Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province 450000, China. Electronic address:

Sleep is crucial for sustaining normal physiological functions, and sleep deprivation has been associated with increased pain sensitivity. The histone deacetylases (HDACs) are known to significantly regulate in regulating neuropathic pain, but their involvement in nociceptive hypersensitivity during sleep deprivation is still not fully understood. Utilizing a modified multi-platform water environment technique to establish a sleep deprivation model.

View Article and Find Full Text PDF
Article Synopsis
  • Histone Deacetylase 1 (HDAC1) removes acetyl groups from histones, impacting gene expression regulation, but its suppression leads to both increases and decreases in gene activity.
  • The study used the dTAG system for rapid HDAC1 degradation in mouse embryonic stem cells, which allowed for specific removal within less than an hour.
  • After HDAC1 degradation, most differentially expressed genes were upregulated within two hours, and changes in histone acetylation patterns indicated HDAC1's complex role in managing gene expression and enhancer activity for maintaining pluripotency.
View Article and Find Full Text PDF
Article Synopsis
  • * The study found that removing the gene LSD1 in myeloid cells (which develop into osteoclasts) leads to increased bone mass and smaller osteoclasts in mice, indicating its role in bone health.
  • * The research suggests that LSD1 influences osteoclast differentiation by affecting gene expression, specifically by interacting with other proteins that modify histones, ultimately impacting how osteoclasts function.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!