Lithium chloride prevents interleukin-1β induced cartilage degradation and loss of mechanical properties.

J Orthop Res

Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom.

Published: October 2015

Osteoarthritis is a chronic degenerative disease that affects the articular cartilage. Recent studies have demonstrated that lithium chloride exhibits significant efficacy as a chondroprotective agent, blocking cartilage degradation in response to inflammatory cytokines. However, conflicting literature suggests lithium may affect the physicochemical properties of articular cartilage and thus long-term exposure may negatively affect the mechanical functionality of this tissue. This study aims to investigate the effect of lithium chloride on the biomechanical properties of healthy and interleukin-1β treated cartilage in vitro and examines the consequences of long-term exposure to lithium on cartilage health in vivo. Bovine cartilage explants were treated with lithium chloride for 12 days. Chondrocyte viability, matrix catabolism and the biomechanical properties of bovine cartilage explants were not significantly altered following treatment. Consistent with these findings, long term-exposure (9 months) to dietary lithium did not induce osteoarthritis in rats, as determined by histological staining. Moreover, lithium chloride did not induce the expression of catabolic enzymes in human articular chondrocytes. In an inflammatory model of cartilage destruction, lithium chloride blocked interleukin-1β signaling in the form of nitric oxide and prostaglandin E2 release and prevented matrix catabolism such that the loss of mechanical integrity observed with interleukin-1β alone was inhibited. This study provides further support for lithium chloride as a novel compound for the treatment of osteoarthritis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973828PMC
http://dx.doi.org/10.1002/jor.22913DOI Listing

Publication Analysis

Top Keywords

lithium chloride
28
lithium
10
cartilage
9
cartilage degradation
8
loss mechanical
8
articular cartilage
8
long-term exposure
8
biomechanical properties
8
bovine cartilage
8
cartilage explants
8

Similar Publications

Counterintuitive DNA destabilization by monovalent salt at high concentrations due to overcharging.

Nat Commun

January 2025

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.

Monovalent salts are generally believed to stabilize DNA duplex by weakening inter-strand electrostatic repulsion. Unexpectedly, our force-induced hairpin unzipping experiments and thermal melting experiments show that LiCl, NaCl, KCl, RbCl, and CsCl at concentrations beyond ~1 M destabilize DNA, RNA, and RNA-DNA duplexes. The two types of experiments yield different changes in free energy during melting, while the results that high concentration monovalent salts destabilize duplexes are common.

View Article and Find Full Text PDF

The aim of this study is to screen key target genes of osteoarthritis associated with aging and to preliminarily explore the associated immune infiltration cells and potential drugs. Differentially expressed senescence-related genes (DESRGs) selected from Cellular senescence-related genes (SRGs) and differentially expressed genes (DEGs) were analyzed using Gene Ontology enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and protein-protein interaction networks. Hub genes in DESRGs were selected based on degree, and diagnostic genes were further screened by gene expression and receiver operating characteristic (ROC) curve.

View Article and Find Full Text PDF

Redox-active Co(II) and Zn(II) Pincer Complexes as High-Capacity Anode Materials for Lithium-Ion Batteries.

Adv Sci (Weinh)

December 2024

Department of Chemistry and Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju, 52828, South Korea.

To address the ongoing demand for high-performance energy storage devices, it is crucial to identify new electrode materials. Lithium-ion batteries (LIBs) store energy via the electrochemical redox process, so their electrode materials should have reversible redox properties for rechargeability. On that note, redox-active metal complexes are explored as innovative electrode materials for LIBs.

View Article and Find Full Text PDF

Objective: Potassium voltage-gated channel sub-family A member 1 (Kv1.1), as a shaker homolog potassium channel, displays a special mechanism for posttranscriptional regulation called RNA editing. Adenosine deaminase acting on RNA 2 (ADAR2) can cause abnormal editing or loss of normal editing, which results in cell damage and related diseases.

View Article and Find Full Text PDF

The mesopores and macropores within porous carbon materials help increase the surface for the depostion of solid-state products, reduce the LiS film thickness, enhance electron and mass transport, and accelerate the reaction kinetics. However, an excessive amount of mesopores and macropores can lead to increased electrolyte consumption, particularly at high sulfur loadings, where excessive electrolyte usage hampers the enhancement of practical energy density in lithium-sulfur (Li-S) batteries. A rational pore structure can minimize the amount of electrolyte to fill the pores, thereby reducing electrolyte consumption while achieving rapid reaction kinetics and a high gravimetric energy density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!