Mitochondria of Saccharomyces cerevisiae lack the respiratory complex I, but contain three rotenone-insensitive NADH dehydrogenases distributed on both the external (Nde1 and Nde2) and internal (Ndi1) surfaces of the inner mitochondrial membrane. These enzymes catalyse the transfer of electrons from NADH to ubiquinone without the translocation of protons across the membrane. Due to the high resolution of the Blue Native PAGE (BN-PAGE) technique combined with digitonin solubilization, several bands with NADH dehydrogenase activity were observed on the gel. The use of specific S. cerevisiae single and double mutants of the external alternative elements (ΔNDE1, ΔNDE2, ΔNDE1/ΔNDE2) showed that the high and low molecular weight complexes contained the Ndi1. Some of the Ndi1 associations took place with complexes III and IV, suggesting the formation of respirasome-like structures. Complex II interacted with other proteins to form a high molecular weight supercomplex with a molecular mass around 600 kDa. We also found that the majority of the Ndi1 was in a dimeric form, which is in agreement with the recently reported three-dimensional structure of the protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/yea.3086 | DOI Listing |
Biochemistry
January 2025
School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, United Kingdom.
The enzyme 4-oxo-l-proline reductase (BDH2) has recently been identified in humans. BDH2, previously thought to be a cytosolic ()-3-hydroxybutyrate dehydrogenase, actually catalyzes the NADH-dependent reduction of 4-oxo-l-proline to -4-hydroxy-l-proline, a compound with known anticancer activity. Here we provide an initial mechanistic characterization of the BDH2-catalyzed reaction.
View Article and Find Full Text PDFAnalyst
January 2025
School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand.
Nicotinamide adenine dinucleotide is a crucial coenzyme in cellular metabolism and is implicated in various diseases. This work introduces an electrochemical bioanalytical method utilizing solution-phase formate dehydrogenase (CbFDH) for detecting its oxidized form (NAD) in human blood plasma samples. The detection mechanism involves the catalytic conversion of NAD to NADH, facilitated by CbFDH in the presence of formate.
View Article and Find Full Text PDFFront Neurosci
January 2025
Department of Geriatric Rehabilitation, Jiangbin Hospital, Nanning, China.
Background: Programmed cell death plays an important role in neuronal injury and death after ischemic stroke (IS), leading to cellular glucose deficiency. Glucose deficiency can cause abnormal accumulation of cytotoxic disulfides, resulting in disulfidptosis. Ferroptosis, apoptosis, necroptosis, and autophagy inhibitors cannot inhibit this novel programmed cell death mechanism.
View Article and Find Full Text PDFPlant Dis
January 2025
Cornell University, Ithaca, New York, United States;
Azerbaijan is major producer of fruit crops, such as pome and stone fruits, in the Caspian Sea and Caucasus Mountains areas (FAO Stat, 2022). No information is available on the occurrence of apple chlorotic leaf spot virus (ACLSV, genus Trichovirus, family Betaflexiviridae) in the country. Therefore, the main fruit tree production areas in Azerbaijan were surveyed for ACLSV during the 2017-2019 growing seasons by DAS-ELISA using ACLSV reagents (Neogen - Scotland, UK) (Clark and Adams 1977).
View Article and Find Full Text PDFFront Microbiol
January 2025
Department of Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany.
Fixation of CO into the organic compound formate by formate dehydrogenases (FDHs) is regarded as the oldest autotrophic process on Earth. It has been proposed that an FDH-dependent CO fixation module could support CO assimilation even in photoautotrophic organisms. In the present study, we characterized FDH from (FDH) due to its ability to reduce CO under aerobic conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!