AI Article Synopsis

  • Lopimune, a protease inhibitor, has not been previously studied for its side effects on mitochondrial energy production in liver cells (hepatocytes).
  • The study focused on measuring mitochondrial respiration, reactive oxygen species (ROS) production, and the expression of uncoupling protein-2 (UCP2) in mouse hepatocytes after administering Lopimune.
  • Results showed that Lopimune reduced mitochondrial respiratory efficiency and increased ROS levels, while UCP2 expression began after a few days, suggesting it may help regulate oxidative stress as a response to Lopimune treatment.

Article Abstract

Although the protease inhibitor (PI) Lopimune has proven to be effective, no studies have examined the side effects of Lopimune on mitochondrial bioenergetics in hepatocytes. The objective of the present study is to evaluate mitochondrial respiration, production of reactive oxygen species (ROS) and expression of uncoupling protein-2 (UCP2) in mouse hepatocytes following Lopimune administration. Mitochondria were extracted from mouse liver using differential centrifugation and hepatocytes were isolated by the collagenase perfusion procedure. Mitochondrial respiration was measured using a Rank Brothers oxygen electrode. ROS production in hepatocytes was monitored by flow cytometry using a 2',7'-dichlorofluorescin diacetate probe and UCP2 protein expression was detected by Western blotting. We found that Lopimune induced a significant decrease of approximately 30% in the respiratory control ratio (RCR) starting from day 4 until day 9 of treatment. This decrease was due to an increase in state 4 respiration, reflecting an increase in mitochondrial proton leak. State 2 and state 3 respirations were not affected. Moreover, ROS production significantly increased by about 2-fold after day 1 of treatment and decreased after day 3, returning to the resting level on day 5. Interestingly, UCP2 which is absent from control hepatocytes, was expressed starting from day 4 of treatment. Our findings indicate that Lopimune-induced proton leak, mediated by UCP2, may represent a response to inhibit the production of ROS as a negative feedback regulatory mechanism. These results imply a potential involvement of UCP2 in the regulation of oxidative stress and add new insights into the understanding of mitochondrial toxicity induced by PIs.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20150195DOI Listing

Publication Analysis

Top Keywords

day treatment
12
mitochondrial toxicity
8
uncoupling protein-2
8
mouse hepatocytes
8
mitochondrial respiration
8
ros production
8
starting day
8
proton leak
8
hepatocytes
6
day
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!