Out-of-equilibrium conditions in x-ray Thomson scattering experiments.

Phys Rev E Stat Nonlin Soft Matter Phys

CEA, DAM, DIF, F-91297 Arpajon, France.

Published: June 2015

We study out-of-equilibrium conditions in recent x-ray Thomson scattering experiments performed in warm dense matter. We use an effective one-component plasma model to characterize the states in which electron and ion temperatures are different. An estimation of the ion temperature is obtained. This method is tested against two recent experiments. Strong out-of-equilibrium conditions are found.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.91.063104DOI Listing

Publication Analysis

Top Keywords

out-of-equilibrium conditions
12
conditions x-ray
8
x-ray thomson
8
thomson scattering
8
scattering experiments
8
experiments study
4
study out-of-equilibrium
4
experiments performed
4
performed warm
4
warm dense
4

Similar Publications

Self-organization under out-of-equilibrium conditions is ubiquitous in natural systems for the generation of hierarchical solid-state patterns of complex structures with intricate properties. Efforts in applying this strategy to synthetic materials that mimic biological function have resulted in remarkable demonstrations of programmable self-healing and adaptive materials. However, the extension of these efforts to multifunctional stimuli-responsive solid-state materials across defined spatial distributions remains an unrealized technological opportunity.

View Article and Find Full Text PDF

Chemical waves represent one of the fundamental behaviors that emerge in nonlinear, out-of-equilibrium chemical systems. They also play a central role in regulating behaviors and development of biological organisms. Nevertheless, understanding their properties and achieving their rational synthesis remains challenging.

View Article and Find Full Text PDF

Hot electrons (HEs) represent out-of-equilibrium carriers that are capable of facilitating reactions which are inaccessible under conventional conditions. Despite the similarity of the HE process to catalysis, optimization strategies such as orbital alignment and adsorption kinetics have not received significant attention in enhancing the HE-driven reaction yield. Here, we investigate catalytic effects in HE-driven reactions using a compositional catalyst modification (CCM) approach.

View Article and Find Full Text PDF

Thermodynamics of the Primordial Universe.

Entropy (Basel)

November 2024

Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Edifício C8, 1749-016 Lisbon, Portugal.

This review delves into the pivotal primordial stage of the universe, a period that holds the key to understanding its current state. To fully grasp this epoch, it is essential to consider three fundamental domains of physics: gravity, particle physics, and thermodynamics. The thermal history of the universe recreates the extreme high-energy conditions that are critical for exploring the unification of the fundamental forces, making it a natural laboratory for high-energy physics.

View Article and Find Full Text PDF

Formation of multicompartment structures through aging of protein-RNA condensates.

Biophys J

January 2025

Department of Chemistry and Applied Biosciences ETH Zürich, Zurich, Switzerland. Electronic address:

Cells can dynamically organize reactions through the formation of biomolecular condensates. These viscoelastic networks exhibit complex material properties and mesoscale architectures, including the ability to form multiphase assemblies. It was shown previously that condensates with complex architectures may arise at equilibrium in multicomponent systems or in condensates that were driven out of equilibrium by changes in external parameters such as temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!