Quantum molecular dynamics (QMD) simulations are used to calculate the equation of state, structure, and transport properties of liquid gallium along the principal shock Hugoniot. The calculated Hugoniot is in very good agreement with experimental data up to a pressure of 150 GPa as well as with our earlier classical molecular dynamics calculations using a modified embedded atom method (MEAM) potential. The self-diffusion and viscosity calculated using QMD agree with experimental measurements better than the MEAM results, which we attribute to capturing the complexity of the electronic structure at elevated temperatures. Calculations of the DC conductivity were performed around the Hugoniot. Above a density of 7.5 g/cm(3), the temperature increases rapidly along the Hugoniot, and the optical conductivity decreases, indicating simple liquid metal behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.91.063101 | DOI Listing |
Langmuir
January 2025
Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Zhejiang, Hangzhou 310018, China.
Molecule-electrode interfaces play a pivotal role in defining the electron transport properties of molecular electronic devices. While extensive research has concentrated on optimizing molecule-electrode coupling (MEC) involving electrode materials and molecular anchoring groups, the role of the molecular backbone structure in modulating MEC is equally vital. Additionally, it is known that the incorporation of heteroatoms into the molecular backbone notably influences factors such as energy levels and conductive characteristics.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
Plants, algae and photosynthetic bacteria convert light into chemical energy by means of photosynthesis, thus providing food and energy for most organisms on Earth. Photosynthetic pigments, including chlorophylls (Chls) and carotenoids, are essential components that absorb the light energy necessary to drive electron transport in photosynthesis. The biosynthesis of Chl shares several steps in common with the biosynthesis of other tetrapyrroles, including siroheme, heme and phycobilins.
View Article and Find Full Text PDFIntroduction: With the increasing use of aeromedical transport for critically ill patients, it is essential to understand the impact of pressure changes on drug infusion delivery systems. As airplanes ascend and descend, gases/bubbles are released from solutions when ambient pressure decreases and dissolves when pressure increases. This may affect mechanical fluid delivery systems and cause clinically significant changes, especially within a critical care setting.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Design of 3D-Printable Polymers Based on Regional Resources, Just Transition Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany.
Lithium batteries, essential for consumer electronics, transportation and the energy sector, still require further improvement in performance, safety, and sustainability. Traditonal organic solvent-based electrolytes, widely used in current systems, pose significant safety risks and restrict the development of next generation devices. Vitrimers are materials with unique physical and chemical properties, which offer a promising alternative to overcome these limitations, finally reaching processability and recyclability of solid electrolytes.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
February 2025
School of Rail Transportation, Soochow University, Suzhou, People's Republic of China.
Urbanization and infrastructure projects generate huge amount of construction and demolition waste (CDW), posing significant challenges for the environment and human health. In order to reduce the environment and safety risks caused by the CDW landfills, this study was amid to utilize plant roots to develop a root-CDW-soil system for strengthening the CDW and enhancing the slope stability of CDW landfills. A series of experimental analyses were conducted, focusing on shear tests of root-soil composites under various moisture conditions and root content ratios.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!