The turbulent wake of a square-back body exhibits a strong bimodal behavior. The wake randomly undergoes symmetry-breaking reversals between two mirror asymmetric steady modes [reflectional symmetry-breaking (RSB) modes]. The characteristic time for reversals is about 2 or 3 orders of magnitude larger than the natural time for vortex shedding. Studying the effects of the proximity of a ground wall together with the Reynolds number, it is shown that the bimodal behavior is the result of an imperfect pitchfork bifurcation. The RSB modes correspond to the two stable bifurcated branches resulting from an instability of the stable symmetric wake. An attempt to stabilize the unstable symmetric wake is investigated using a passive control technique. Although the controlled wake still exhibits strong fluctuations, the bimodal behavior is suppressed and the drag reduced. This promising experiment indicates the possible existence of an unstable solution branch corresponding to a reflectional symmetry preserved (RSP) mode. This work is encouraging to develop a control strategy based on a stabilization of this RSP mode to reduce mean drag and lateral force fluctuations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.91.063005 | DOI Listing |
Cerebellum
January 2025
Department of Neuroscience and Physiology, Grossman School of Medicine, NYU Neuroscience Institute, New York University, New York, NY, 10016, USA.
3D Print Addit Manuf
October 2024
Department of Mechanical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA.
Digital light processing (DLP) is rapidly growing in popularity as an additive manufacturing method for the fabrication of composite structures, and is an effective way to prepare high-resolution filled parts, such as ceramic green parts or composite magnets. Yet, higher solid loadings of resins and the resulting dramatic increases in viscosity limit DLP printing for applications that depend upon maximization of filler content. In this work, we investigate the capacity of a bimodal particle size distribution to enable the printing of a photosensitive resin containing up to 70 vol% of fillers.
View Article and Find Full Text PDFExp Brain Res
December 2024
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, CNY 149, 13th St, Charlestown, MA, 02129, USA.
Working memory (WM) reflects the transient maintenance of information in the absence of external input, which can be attained via multiple senses separately or simultaneously. Pertaining to WM, the prevailing literature suggests the dominance of vision over other sensory systems. However, this imbalance may be stemming from challenges in finding comparable stimuli across modalities.
View Article and Find Full Text PDFSci Rep
December 2024
Hebei Provincial Key Laboratory of Orthopaedic Biomechanics, Hebei Orthopaedic Research Institute, No. 139 Ziqiang Road, Shijiazhuang, 050051, China.
To investigate the population distribution characteristics of elderly osteoporosis fracture patients in Hebei Province and analyze the effects of air pollutants on elderly osteoporosis fractures, We retrospectively collected 18,933 cases of elderly osteoporosis fractures from January 1, 2019, to December 31, 2022, from four hospitals in Hebei Province. The average age was 76.44 ± 7.
View Article and Find Full Text PDFFront Neurosci
December 2024
Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, China.
Background: Cochlear implants (CIs) have the potential to facilitate auditory restoration in deaf children and contribute to the maturation of the auditory cortex. The type of CI may impact hearing rehabilitation in children with CI. We aimed to study central auditory processing activation patterns during speech perception in Mandarin-speaking pediatric CI recipients with different device characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!