Dynamics of modulated waves in a lossy modified Noguchi electrical transmission line.

Phys Rev E Stat Nonlin Soft Matter Phys

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.

Published: June 2015

We study analytically the dynamics of modulated waves in a dissipative modified Noguchi nonlinear electrical network. In the continuum limit, we use the reductive perturbation method in the semidiscrete limit to establish that the propagation of modulated waves in the network is governed by a dissipative nonlinear Schrödinger (NLS) equation. Motivated with a solitary wave type of solution to the NLS equation, we use both the direct method and the Weierstrass's elliptic function method to present classes of bright, kink, and dark solitary wavelike solutions to the dissipative NLS equation of the network. Through the exact solitary wavelike solutions to the dissipative NLS equation, we investigate the effects of the dissipative elements of the network on wave propagation. We show that the wave amplitude decreases and its width increases when the dissipative element of the network increases. It has been also found that the dissipative element of the network can be used to manipulate the motion of solitary waves through the network. This work presents a good analytical approach of investigating the propagation of solitary waves through discrete electrical transmission lines and is very important for studying modulational instability.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.91.062915DOI Listing

Publication Analysis

Top Keywords

nls equation
16
modulated waves
12
dynamics modulated
8
modified noguchi
8
electrical transmission
8
waves network
8
solitary wavelike
8
wavelike solutions
8
solutions dissipative
8
dissipative nls
8

Similar Publications

We propose a general approach to quasi-deform the Korteweg-De Vries (KdV) equation by deforming its Hamiltonian. The standard abelianization process based on the inherent sl(2) loop algebra leads to an infinite number of anomalous conservation laws, that yield conserved charges for definite space-time parity of the solution. Judicious choice of the deformed Hamiltonian yields an integrable system with scaled parameters as well as a hierarchy of deformed systems, some of which possibly are quasi-integrable.

View Article and Find Full Text PDF

The well-posedness of the initial-boundary value problem for higher-order quadratic nonlinear Schrödinger equations on the half-line is studied by utilizing the Fokas solution formula for the corresponding linear problem. Using this formula, linear estimates are derived in Bourgain spaces for initial data in spatial Sobolev spaces on the half-line and boundary data in temporal Sobolev spaces suggested by the time regularity of the linear initial value problem. Then, the needed bilinear estimates are derived and used for showing that the iteration map defined via the Fokas solution formula is a contraction in appropriate solution spaces.

View Article and Find Full Text PDF

In this article, we propose a split-step finite element method (FEM) for the two-dimensional nonlinear Schrödinger equation (NLS) with Riesz fractional derivatives in space. The space-fractional NLS is first spatially discretized by finite element scheme and the semi-discrete variational scheme is obtained. We prove that it maintains the mass and energy conservation laws.

View Article and Find Full Text PDF
Article Synopsis
  • This paper explores the properties of modulational instability (MI) and rogue waves (RWs) using generalized fractional nonlinear Schrödinger (FNLS) equations with rational potentials, focusing on the relationship between wavenumber and instability growth rates.
  • The study confirms through numerical simulations that MI occurs in focusing conditions and reveals how certain time-dependent potentials lead to controllable RWs in both cubic and quintic FNLS equations.
  • Additionally, it investigates the generation of higher-order RWs and identifies the conditions for their emergence, providing insights into the interaction between system parameters and potentials, which could inform future nonlinear wave research.
View Article and Find Full Text PDF

In this study, the modified Sardar sub-equation method is capitalised to secure soliton solutions to the -dimensional chiral nonlinear Schrödinger (NLS) equation. Chiral soliton propagation in nuclear physics is an extremely attractive field because of its wide applications in communications and ultrafast signal routing systems. Additionally, we perform bifurcation analysis to gain a deeper understanding of the dynamics of the chiral NLS equation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!