Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present a study that addresses both the stationary properties of the energy current and quantum correlations in a three-mode chain subjected to Ohmic and super-Ohmic dissipations. An extensive numerical analysis shows that the mean value and the fluctuations of the energy current remain insensitive to the emergence of a rich variety of quantum correlations, such as two-mode discord and entanglement and bipartite three-mode and genuine tripartite entanglement. The discussion of the numerical results is based on the derived expressions for the stationary properties in terms of the two-time correlation functions of the oscillator operators, which carry the quantum correlations. Interestingly, we show that quantum discord can be enhanced by considering both initially squeezed thermal bath states and imposing temperature gradients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.91.062123 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!