The introduction of electron donor and acceptor groups at strategic locations on a fluorogenic cyanine dye allows fine-tuning of the absorption and emission spectra while preserving the ability of the dye to bind to biomolecular hosts such as double-stranded DNA and a single-chain antibody fragment originally selected for binding to the parent unsubstituted dye, thiazole orange (TO). The observed spectral shifts are consistent with calculated HOMO-LUMO energy gaps and reflect electron density localization on the quinoline half of TO in the LUMO. A dye bearing donating methoxy and withdrawing trifluoromethyl groups on the benzothiazole and quinoline rings, respectively, shifts the absorption spectrum to sufficiently longer wavelengths to allow excitation at green wavelengths as opposed to the parent dye, which is optimally excited in the blue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4557812 | PMC |
http://dx.doi.org/10.1039/c5pp00117j | DOI Listing |
Molecules
December 2024
Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 James Bourchier Blvd., 1164 Sofia, Bulgaria.
The development of fluorescence-based methods for bioassays and medical diagnostics requires the design and synthesis of specific markers to target biological microobjects. However, biomolecular recognition in real cellular systems is not always as selective as desired. A new concept for creating fluorescent biomolecular probes, utilizing a fluorogenic dye and biodegradable, biocompatible nanomaterials, is demonstrated.
View Article and Find Full Text PDFChemistryOpen
December 2024
NUBAD LLC, Greer, 29650, USA.
Selective binding of small molecule ligands to nucleic acids with high affinity and limited toxicity remains an important goal in the development of compounds that can probe DNA or RNA in cells. Thiazole orange is a cell semi-permeant, fluorescent cyanine dye, with low background noise, that binds several forms of nucleic acids. However, thiazole orange can exhibit cytotoxicity when used at high concentration and/or with prolonged exposure.
View Article and Find Full Text PDFAnal Chem
December 2024
Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K.
Visualization of guanine-rich oligonucleotides that fold into G-quadruplex (G4) helical structures is of great interest in cell biology. There is a large body of evidence that suggests that these noncanonical structures form and play important biological roles. A promising recent development highlighted fluorescence lifetime imaging microscopy (FLIM) as a robust technique for the direct and quantitative imaging of G4s in live cells.
View Article and Find Full Text PDFChem Sci
January 2025
Institut für Chemie, Humboldt-Universität zu Berlin 12489 Berlin Germany
Fluorogenic hybridization probes are essential tools in modern molecular biology techniques. They allow detection of specific nucleic acid molecules without the need to separate target-bound from unbound probes. To enable detection of targets at low concentration, fluorogenic probes should have high brightness.
View Article and Find Full Text PDFACS Chem Biol
December 2024
Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!