Tetrameric Assembly of Monoubiquitin Accurately Mimics the Lys11 Polyubiquitin Chain Structure.

Biochemistry

Department of Biochemistry and Molecular Biology and Institute for Structural Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.

Published: August 2015

Specific lysine residues on the ubiquitin surface were selected during the course of evolution to form different polyubiquitin chain structures that signal diverse cellular processes. A vast number of ubiquitin receptors specifically recognize and decode the signals conferred by these polyubiquitin chains. The mechanisms of formation and the structure of Lys11-linked ubiquitin, which signals for cell-cycle and innate immune control, have been elucidated. Here, we present a new crystal structure of monomeric ubiquitin that accurately mimics one of the structures of Lys11-linked ubiquitin. Analysis of the ubiquitin:ubiquitin interface demonstrates structural fitness and specificity. The interaction is exclusively hydrophilic, leaving the Ile44 hydrophobic patch, a major recognition site for ubiquitin receptors, exposed. These noncovalent ubiquitin:ubiquitin interactions are nearly identical to those reported for Lys11-linked ubiquitin and seem to play a significant role in stabilizing the crystal structure without the isopeptide bond. In vitro cross-linking analysis with wild-type ubiquitin or its mutants partially mimics the interactions in the crystal. We suggest that these interactions may play a biological role in transmitting Lys11-linked ubiquitin chain-type cellular signals.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.5b00498DOI Listing

Publication Analysis

Top Keywords

lys11-linked ubiquitin
16
ubiquitin
9
accurately mimics
8
polyubiquitin chain
8
ubiquitin receptors
8
crystal structure
8
tetrameric assembly
4
assembly monoubiquitin
4
monoubiquitin accurately
4
mimics lys11
4

Similar Publications

Cezanne-2 (Cez2) is a deubiquitinylating (DUB) enzyme involved in the regulation of ubiquitin-driven cellular signaling and selectively targets Lys11-linked polyubiquitin chains. As a representative member of the ovarian tumor (OTU) subfamily DUBs, it performs cysteine proteolytic isopeptide bond cleavage; however, its exact catalytic mechanism is not yet resolved. In this work, we used different computational approaches to get molecular insights into the Cezanne-2 catalytic mechanism.

View Article and Find Full Text PDF

Metastasis accounts for the major cause of colorectal cancer (CRC) related mortality due to the lack of effective treatments. In this study, we integrated the single-cell RNA-seq (scRNA-seq) and bulk RNA-seq data and identified the transcriptional coactivator SUB1 homolog (Sac-Saccharomyces cerevisiae)/PC4 (positive cofactor 4) associated with CRC metastasis. Elevated SUB1 expression was correlated with advanced tumor stage and poor survival in CRC.

View Article and Find Full Text PDF

Targeted Preparation and NMR Spectroscopic Characterization of Lys11-Linked Ubiquitin Trimers.

Chembiochem

February 2024

Universität Konstanz, Department of Chemistry and Graduate School of Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457, Konstanz, Germany.

Ubiquitylation refers to the attachment of mono- or poly-ubiquitin molecules to a substrate protein. To shield ubiquitin chains against potential hydrolysis, a facile, click-chemistry based approach was recently established for the generation of site-specifically conjugated ubiquitin dimers relying on triazole-linkage. Here, the preparation of such ubiquitin chains was advanced by the generation of homotypic Lys11-linked ubiquitin trimers considering an isotopic labeling scheme in a moiety-wise manner.

View Article and Find Full Text PDF

Deubiquitinylating enzymes (DUBs) regulate the deubiquitinylation process of post-translationally modified proteins and thus control protein signaling in various cellular processes. The DUB Cezanne-1 catalyzes the cleavage of the iso-peptide bond of Lys11-linked polyubiquitin chains with high selectivity. Crystal structures of Cezanne-1 in different states provide important insight regarding the complex formation and global changes during the catalytic cycle but are lacking details of dynamics and control of activation.

View Article and Find Full Text PDF

Emerging Roles of Non-proteolytic Ubiquitination in Tumorigenesis.

Front Cell Dev Biol

July 2022

Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China.

Ubiquitination is a critical type of protein post-translational modification playing an essential role in many cellular processes. To date, more than eight types of ubiquitination exist, all of which are involved in distinct cellular processes based on their structural differences. Studies have indicated that activation of the ubiquitination pathway is tightly connected with inflammation-related diseases as well as cancer, especially in the non-proteolytic canonical pathway, highlighting the vital roles of ubiquitination in metabolic programming.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!