Nano bubbles and films are important in theory and various applications, such as the specific ion effect of bubble coalescence, flotation and porous medium seepage; these rely greatly on the fundamental aspects of extended-DLVO surface forces. However, the origin and validation of the non-DLVO forces are still obscure, especially at the nano scale (1-5 nm). Herein, we report the first determination of the disjoining pressures of aqueous electrolyte nano-films using molecular dynamics (MD) simulations. Our results showed that adding salt does not lead to a decrease in the disjoining pressure. On the contrary, higher concentrations results in greater disjoining pressures. In addition, the temperature was found to significantly change the pattern of the disjoining pressure isotherm. These results aid the understanding of a number of underlying mechanisms, involving nano solid-liquid-gas surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp03050a | DOI Listing |
J Colloid Interface Sci
December 2024
Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA; High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA. Electronic address:
Knowledge Gap: The aggregation of clay minerals in liquid water exemplifies colloidal self-assembly in nature. These negatively charged aluminosilicate platelets interact through multiple mechanisms with different sensitivities to particle shape, surface charge, aqueous chemistry, and interparticle distance and exhibit complex aggregation structures. Experiments have difficulty resolving the associated colloidal assemblages at the scale of individual particles.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
Because a significant portion of oil remains in carbonate reservoirs, efficient techniques are essential to increase oil recovery from carbonate reservoirs. Wettability alteration is crucial for enhanced oil recovery (EOR) from oil-wet reservoirs. This study investigates the impact of different substances on the wettability of dolomite and calcite rocks.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Laboratory of Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, Wageningen, 6708WG, Netherlands.
Hypothesis: Plant-based proteins offer a sustainable solution for stabilizing multiphase food materials like edible foams and emulsions. However, challenges in understanding and engineering plant protein-stabilized interfaces persist, mostly because of the commonly poorer functionality and complex composition of the respective protein isolates. We hypothesize that part of the limited understanding is related to the lack of experimental data on the length-scale of the thin liquid film that separates two neighboring bubbles.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India.
In this study, we develop a comprehensive two-phase model to analyze the dynamics of bacterial swarming on porous substrates. The two distinct phases under consideration are the cell and aqueous phases. We use the thin-film approximation, as the characteristic height of the swarm is significantly lower than its characteristic radius.
View Article and Find Full Text PDFSmall
November 2024
School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China.
Liquid metals (LMs) illustrate a fantastic future. Thus, great endeavors are made to earn a comprehensive understanding of this fluid and carve it into a niche. Herein, by revisiting the combination of Ga-based LMs and aluminum (Al), a new phenomenon, namely the disintegration of LM films on encountering water, is identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!