Cortex Eucommiae (Du-zhong) is the dried bark of the Eucommia ulmoides Oliv. The natural products identified from Du-zhong include lignans, iridoids, flavonoids, polysaccharides, terpenes, and proteins, Liu et al. (2012). Lignans, the main bioactive components, were protective against hypertensive renal injury in spontaneous hypertensive rats in our previous study, Li et al. (2012). Moreover, Eucommia lignans also diminished aldose reductase (AR) overexpression in the kidney, Li et al. (2012). However, the pathological mechanism underlying the protective effects of Eucommia lignans remains unknown. Cellular proliferation was reported to contribute to important pathological changes in hypertensive renal injuries, and increased angiotensin II (Ang II) expression was reported to be essential for target-organ damage during hypertension. Ang II is the main effective peptide in the renin-angiotensin system and is considered to be a key mediator in the development of hypertensive nephropathy, Rüster and Wolf (2011). Our preliminary results showed that Eucommia lignans had inhibitory effects on Ang II-induced proliferation of rat mesangial cells. In the present study, we investigated the effects of Eucommia ulmoides on Ang II-induced proliferation and apoptosis of rat mesangial cells. Cell cycle-related genes P21 and P27, and cell apoptosis-related genes Bax and Bcl-2, were determined.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4478362 | PMC |
http://dx.doi.org/10.1155/2015/987973 | DOI Listing |
Animals (Basel)
January 2025
National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
Pacific white shrimp ( is an important aquaculture shrimp in China and globally due to its high nutritional value and delicious flavors [...
View Article and Find Full Text PDFJ Vis Exp
December 2024
Department of Cell Biology, School of Life Sciences, Central South University;
The aqueous extract from the bark of Eucommia ulmoides serves as a rich source of bioactive compounds with numerous health benefits. The protocol here aims to explore the preparation of zinc oxide (ZnO) nanoparticles using the Eucommia ulmoides bark-mediated polyisoprene-rich aqueous extract. Meanwhile, the proposed protocol is associated with the preparation of wound healing material by easing the process.
View Article and Find Full Text PDFJ Appl Microbiol
January 2025
Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, 550025 Guiyang, China.
Aims: To determine the optimum conditions for extracting Eucommia ulmoides gum (EUG) from Eucommia ulmoides leaves during fermentation by Coprinellus disseminatus. At the same time, the EUG characteristics were characterized.
Methods And Results: The ability of C.
Carbohydr Polym
March 2025
College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; College of Forestry, Northwest A&F University, Yangling 712100, China; Western Scientific Observation and Experiment Station for Development and Utilization of Rural Renewable Energy, M.O.A, Northwest Agriculture & Forestry University, Yangling 712100, China. Electronic address:
The efficient extraction and purification of active components from Eucommia ulmoides Oliver (EUO) are crucial for their utilization. The structure and properties of the prepared EUO leaf polysaccharides (ELPs) and extractum (ELE) were comprehensively characterized in this study, and the intervention mechanism of the EUO polysaccharides and extractum in alcoholic liver disease (ALD) were investigated. The yield of EUO extractum was 24.
View Article and Find Full Text PDFJ Med Food
January 2025
Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Republic of Korea.
Here, we investigated whether a mixture of and (1:3, KGC01CE) could suppress muscle atrophy in HO-induced C2C12 cells and dexamethasone-injected mice. Our results revealed that KGC01CE effectively safeguarded against HO-induced muscle atrophy in C2C12 cells compared with the same mixture at other ratios. We demonstrated that dexamethasone elicited oxidative stress in muscle tissue and decreased the grip strength and cross-sectional areas of muscle fibers; however, oral administration of KGC01CE (1:3) suppressed these dexamethasone-induced changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!