Choroidal neovascularization (CNV) secondary to pathologic myopia has a very high incidence in global, especially in Asian, populations. It is a common cause of irreversible central vision loss, and severely affects the quality of life in the patients with pathologic myopia. The traditional therapeutic modalities for CNV secondary to pathologic myopia include thermal laser photocoagulation, surgical management, transpupillary thermotherapy, and photodynamic therapy with verteporfin. However, the long-term outcomes of these modalities are disappointing. Recently, intravitreal administration of anti-VEGF biological agents, including bevacizumab, ranibizumab, pegaptanib, aflibercept, and conbercept, has demonstrated promising outcomes for this ocular disease. The anti-VEGF regimens are more effective on improving visual acuity, reducing central fundus thickness and central retina thickness than the traditional modalities. These anti-VEGF agents thus hold the potential to become the first-line medicine for treatment of CNV secondary to pathologic myopia. This review follows the trend of "from bench to bedside", initially discussing the pathogenesis of myopic CNV, delineating the molecular structures and mechanisms of action of the currently available anti-VEGF drugs, and then systematically comparing the up to date clinical applications as well as the efficacy and safety of the anti-VEGF drugs to the CNV secondary to pathologic myopia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4494177 | PMC |
http://dx.doi.org/10.2147/DDDT.S87920 | DOI Listing |
Exp Eye Res
January 2025
Department of Ophthalmology, The Second Hospital &Clinical Medical School, Lanzhou University, Gansu, 730000, China. Electronic address:
The mechanisms underlying the low incidence of myopia at high altitudes remain unclear. Choroidal thickness and the dopaminergic system have been shown to be closely associated with myopia development. This study aimed to investigate the effects of high altitude exposure on choroidal thickness and the dopaminergic system.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
January 2025
Department of Ophthalmology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200001, China.
Purpose: To evaluate the posterior scleral stiffness of different regions in high myopic eyes and to explore its associations with macular choroidal and peripapillary retinal nerve fiber layer (pRNFL) thickness and vasculature.
Methods: Thirty subjects with high myopic eyes and 30 subjects with low myopic eyes were included in this study. The elastic modulus of the macular and peripapillary sclera at the temporal, nasal, superior and inferior regions were determined via shear wave elastography (SWE).
BMJ Open Ophthalmol
January 2025
Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
Objective: We compared the protein structure and pathogenicity of clinically relevant variants of the gene with AlphaFold2 (AF2), Alpha Missense (AM), and ThermoMPNN for the first time.
Methods And Analysis: The sequences of clinically relevant Cog4 missense variants (one novel identified p.Y714F and three pre-existing p.
Cureus
December 2024
Ophthalmology, Medical School, Institute of Vision and Optics, University of Crete, Heraklion, GRC.
Purpose: Scleral cross-linking (SXL) with ultraviolet A (UVA) and riboflavin has already been used in laboratory studies for scleral stiffness increase as a potential treatment for progressive myopia and scleral ectasia. This study aims to investigate whether the regional application of scleral cross-linking (SXL) with ultraviolet A (UVA) and riboflavin in fresh porcine eye globes affects the ocular rigidity as well as its impact on intraocular pressure after an induced acute increase in the volume of intraocular fluid.
Methods: The study included two groups of fresh porcine eyes: an experimental group (n=20) that underwent scleral cross-linking (SXL) with riboflavin and UVA applied to the posterior sclera and a control group (n=20) that did not receive SXL treatment.
Int J Mol Sci
January 2025
College of Physical Education, Hunan Normal University, Changsha 410012, China.
Myopia is one of the dominant causes of visual impairment in the world. Pathological myopia could even lead to other serious eye diseases. Researchers have reached a consensus that myopia could be caused by both environmental and genetic risk factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!