In this article we highlight recent work using nanopores to detect and study proteins. Nanopores are excellent single molecule sensors, capable of rapidly characterizing small molecules with relatively modest instrumentation requirements. Although the vast majority of recent effort and attention surrounding nanopores has centered on detection and sequencing of nucleic acids, proteins represent a more difficult and diverse analyte population, with a wide range of sizes, structures, charges, among other characteristics. Nanopores can be used to detect the presence of proteins of interest as well as to study their enzymatic activity, binding to ligands, and secondary structure. We highlight new work describing detection of specific protein species in solution by coupling them to a strand of carrier DNA that is used to electrophoretically transport the proteins through conical glass nanopores. Additionally, we spotlight another approach for nanopore detection of protein and other analytes through detection of their binding to aptamers-measurements which were quantitative to pM concentrations. Finally, we highlight studies in which protein secondary structure and folding energetics were studied through the use of an unfoldase enzyme coupled to a protein nanopore, a technique capable of detecting the effects of single amino acid mutations on the stability of the folded protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5lc90076j | DOI Listing |
JACS Au
December 2024
Institute of Bio- and Geosciences 1: Biotechnology (IBG-1), Forschungszentrum Jülich GmbH, Jülich, Nordrhein-Westfalen 52428, Germany.
The chemical industry can now seize the opportunity to improve the sustainability of its processes by replacing fossil carbon sources with renewable alternatives such as CO, biomass, and plastics, thereby thinking ahead and having a look into the future. For their conversion to intermediate and final products, different types of catalysts-microbial, enzymatic, and organometallic-can be applied. The first part of this review shows how these catalysts can work separately in parallel, each route with unique requirements and advantages.
View Article and Find Full Text PDFJACS Au
December 2024
Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan.
The ability to quench reactive oxygen species (ROS) overproduced in plant chloroplasts under light stress conditions is essential for securing plant photosynthetic performance and agricultural yield. Although genetic engineering can enhance plant stress resistance, its widespread application faces limitations due to challenges in successful transformation across plant species and public acceptance concerns. This study proposes a nontransgenic chemical approach using a designed chimeric peptide that scavenges ROS within plant chloroplasts for managing light stress.
View Article and Find Full Text PDFJ Inflamm Res
December 2024
Department of Internal and Emergency Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
Purpose: Septic cardiomyopathy (SCM) is a significant global public health concern characterized by substantial morbidity and mortality, which has not been improved for decades due to lack of early diagnosis and effective therapies. This study aimed to identify hub biomarkers in SCM and explore their potential mechanisms.
Methods: We utilized the GSE53007 and GSE207363 datasets for transcriptome analysis of normal and SCM mice.
J Inflamm Res
December 2024
Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
Introduction: Systemic lupus erythematosus is a heterogeneous autoimmune disease. A burst of autoimmune reactions in various systems can lead to severe clinical conditions closely associated with mortality. T cells serve as mediators that drive the occurrence and maintenance of inflammatory processes.
View Article and Find Full Text PDFPsychol Res Behav Manag
December 2024
Department of Psychiatry, Sleep Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
Purpose: Network analysis is a statistical method that explores the complex interrelationships among variables by representing them as nodes and edges in a network structure. This study aimed to examine the interconnections between family functioning, anxiety, and depression among vocational school students through network analysis approach.
Participants And Methods: A sample of 2728 higher vocational school students participated in a survey utilizing the Family APGAR Index Questionnaire (APGAR), Generalized Anxiety Disorder Scale (GAD-7), and Patient Health Questionnaire (PHQ-9).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!