Skeletal muscles are composed of two major muscle fiber types: slow-twitch oxidative fibers and fast-twitch glycolytic fibers. The proteins in these muscle fibers are known to differ in their expression, relative abundance, and post-translational modifications. In this study, we report a previously unreported post-translational modification of α-skeletal muscle actin in the skeletal muscles of adult male F344 rats in vivo. Using two-dimensional electrophoresis (2D-PAGE), we first examined the differences in the protein expression profiles between the soleus and plantaris muscles. We found higher intensity protein spots at approximately 60 kDa and pH 9 on 2D-PAGE for the soleus muscle compared with the plantaris muscle. These spots were identified as α-skeletal muscle actin by liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry and western blot analyses. In addition, we found that the 60 kDa α-skeletal muscle actin is modified by small ubiquitin-like modifier (SUMO) 1, using 2D-PAGE and western blot analyses. Furthermore, we found that α-skeletal muscle actin with larger molecular weight was localized in the nuclear and cytosol of the skeletal muscle, but not in the myofibrillar fraction by the combination of subcellular fractionation and western blot analyses. These results suggest that α-skeletal muscle actin is modified by SUMO-1 in the skeletal muscles, localized in nuclear and cytosolic fractions, and the extent of this modification is much higher in the slow muscles than in the fast muscles. This is the first study to show the presence of SUMOylated actin in animal tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-015-2512-1DOI Listing

Publication Analysis

Top Keywords

α-skeletal muscle
24
muscle actin
24
muscle
12
skeletal muscles
12
western blot
12
blot analyses
12
actin skeletal
8
skeletal muscle
8
actin modified
8
analyses α-skeletal
8

Similar Publications

Performance of weighted genomic BLUP and Bayesian methods for Hanwoo carcass traits.

Trop Anim Health Prod

January 2025

Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.

To improve the quality and yield of the Korean beef industry, selection criteria often focus on estimated breeding values for carcass weight (CWT), eye muscle area (EMA), backfat thickness (BF), and marbling score (MS). This study estimated genetic parameters and assessed the accuracy of genomic estimated breeding values (GEBVs) using SNP weighting methods. We compared the accuracy of these methods with the genomic best linear unbiased prediction (GBLUP) and various Bayesian approaches (BayesA, BayesB, BayesC, and BayesCPi) for the specified traits.

View Article and Find Full Text PDF

Platelet membrane-modified exosomes targeting plaques to activate autophagy in vascular smooth muscle cells for atherosclerotic therapy.

Drug Deliv Transl Res

January 2025

Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.

Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.

View Article and Find Full Text PDF

Background: The relationship between the psoas muscle gauge (PMG), a combined sarcopenia indicator obtained from psoas muscle index (PMI) and psoas muscle density (PMD), and adverse clinical outcomes in patients on hemodialysis remains unclear. We examined whether psoas muscle gauge could predict all-cause mortality and new cardiovascular events more accurately than psoas muscle index in these patients.

Methods: We retrospectively included 217 hemodialysis patients who underwent abdominal computed tomography.

View Article and Find Full Text PDF

Entrapment neuropathies of the lower extremity are often underdiagnosed due to limitations in clinical examination and electrophysiological testing. Advanced imaging techniques, particularly MR neurography and high-resolution ultrasonography (US), have significantly improved the evaluation and diagnosis of these conditions by enabling precise visualization of nerves and their surrounding anatomical structures. This review focuses on the imaging features of compressive neuropathies affecting the lumbosacral plexus and its branches, including the femoral, obturator, sciatic, common peroneal, and tibial nerves.

View Article and Find Full Text PDF

Comparison of different treatment positions of nerve slider technique for patients with low back pain: a randomized control trial.

Eur J Phys Rehabil Med

January 2025

Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, European University of Lefke, Mersin, Türkiye.

Background: Low back pain (LBP) accompanied by sciatica is a widespread musculoskeletal issue with multifactorial etiology, impacting individuals across various demographics. Conservative treatments, notably physiotherapy, are key in managing LBP with sciatica, with neural mobilization techniques emerging as beneficial adjuncts.

Aim: This research aims to assess the effectiveness of utilizing the sciatic slider technique (SST) in both supine and slump positions, compared to conventional physiotherapy alone, in alleviating pain severity, improving lumbar flexibility, lumbar lordosis, lower limb muscle strength, and functional ability in patients with LBP associated with sciatica.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!