A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Methylating micronutrient supplementation during pregnancy influences foetal hepatic gene expression and IGF signalling and increases foetal weight. | LitMetric

Purpose: Maternal diet during pregnancy impacts foetal growth and development. In particular, dietary levels of methylating micronutrients (methionine, folate, choline, vitamins B6, and B12) interfere with the availability and allocation of methyl groups for methylation reactions, thereby influencing normal transcription. However, the currently recommended methylating micronutrient supplementation regimen is haphazard and arbitrary at best.

Methods: To investigate the effects of a methylating micronutrient-rich maternal diet, pregnant Pietrain sows were fed either a standard diet (CON) or a diet supplemented with methionine, folate, choline, B6, B12, and zinc (MET). Foetal liver and muscle (M. longissimus dorsi) tissues were collected at 35, 63, and 91 days post-conception. Transcriptional responses to diet were assessed in foetal liver. Altered insulin-like growth factor (IGF) signalling in transcriptome analyses prompted investigation of IGF-2 and insulin-like growth factor binding proteins (IGFBPs) levels in muscle and liver.

Results: Maternal diet enriched with methylating micronutrients was associated with increased foetal weight in late gestation. Hepatic transcriptional patterns also revealed differences in vitamin B6 and folate metabolism between the two diets, suggesting that supplementation was effective. Additionally, shifts in growth-supporting metabolic routes of the lipid and energy metabolism, including IGF signalling, and of cell cycle-related pathways were found to occur in liver tissue in supplemented individuals. Weight differences and modulated IGF pathways were also reflected in the muscle content of IGF-2 (increased in MET) and IGFBP-2 (decreased in MET).

Conclusions: Maternal dietary challenges provoke stage-dependent and tissue-specific transcriptomic modulations in the liver pointing to molecular routes contributing to the organismal adaptation. Subtle effects on late foetal growth are associated with changes in the IGF signalling mainly in skeletal muscle tissue that is less resilient to dietary stimuli than liver.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00394-015-0990-2DOI Listing

Publication Analysis

Top Keywords

igf signalling
16
maternal diet
12
methylating micronutrient
8
micronutrient supplementation
8
foetal weight
8
foetal growth
8
methylating micronutrients
8
methionine folate
8
folate choline
8
foetal liver
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!