Mercury (Hg) is a highly toxic metal which can cause serious health effects. The aim of this research was to determine the concentrations of total Hg (T-Hg), methyl Hg (Me-Hg), and inorganic Hg (I-Hg) in the biological samples (plasma, red blood cells (RBCs), urine, hair, and nails) of the exposed goldsmith workers. This is the first study that determines the detailed Hg concentrations in the biological samples (plasma, RBCs, urine, hair, and nails) of the exposed goldsmith workers and correlates them with the diseases noted among the workers in a single paper. Biological samples were collected from goldsmith workers (n = 40) and analyzed for T-Hg, Me-Hg, and I-Hg using atomic absorption spectrometer equipped with mercury hydride system. The mean T-Hg concentration in RBCs (33 μg L(-1)), plasma (11.8 μg L(-1)), urine (167 μg L(-1)), hair (4.21 μg g(-1)), and nails (5.91 μg g(-1)) were higher than the control RBCs (1.64 μg L(-1)), plasma (0.55 μg L(-1)), urine (2.72 μg L(-1)), hair (0.35 μg g(-1)), and nails (0.51 μg g(-1)). All workers participated in this study were suffering from physical and mental diseases. The concentration of Hg was found higher among the workers suffering from mental diseases as compared to those suffering from physical diseases. Among the physical diseases, the most serious diseases were sexual dysfunction, skin diseases, and fatigue because the workers suffering from these diseases had higher concentration of Hg than the workers with other diseases. The occurrence of physical diseases (88%) was greater than the mental diseases (53%) among the workers. The correlations of physical and mental diseases with experience (years of work) and exposure time were significant (p < 0.05), while nonsignificant (p > 0.05) correlation was observed between demographic parameters and Hg concentrations in the biological samples of the workers. The burning process of amalgamated gold is a significant source of Hg exposure to goldsmith workers; therefore, awareness and precautionary measures are needed to provide protection to them.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-015-4952-2DOI Listing

Publication Analysis

Top Keywords

μg l-1
24
biological samples
16
goldsmith workers
16
μg g-1
16
mental diseases
16
workers
12
diseases
12
physical diseases
12
μg
10
health effects
8

Similar Publications

Among the environmental emerging concern rare earth elements, lanthanum (La) is one of the most common and reactive. Lanthanum is widely used in numerous modern technologies and applications, and its intense usage results in increasing discharges into the environment, with potentially deleterious consequences to earthlings. Therefore, we exposed the important food resource and powerful monitoring tool Manila clam to two environmentally relevant concentrations of La (0.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies have identified a new type of inflammation (T2-high endotype) in bronchiectasis, which contrasts with the previously accepted neutrophilic inflammation.
  • A cross-sectional study found that 31% of bronchiectasis patients without asthma exhibited characteristics of the T2-high endotype, leading to more severe symptoms and reduced quality of life.
  • In a separate case series, severe asthmatic patients with bronchiectasis showed significant reduction in exacerbation rates after treatment with mepolizumab or benralizumab, highlighting the potential benefits of targeting the T2-high endotype in future clinical trials.
View Article and Find Full Text PDF

A new microfluidic approach using hybrid magnetoliposomes (h-MLs) containing hydrophobic magnetic nanoparticles (FeO@AuNPs-C12SH) and encapsulated -acetylcysteine has been developed in this research to determine aminoglycoside antibiotic (AAG) residues in food using -phthalaldehyde. Four AAGs, kanamycin, streptomycin, gentamicin, and neomycin, have been used as model analytes. The h-MLs have been used for reagent preconcentration and were retained using an external electromagnet device in the reaction/detection zone in a microfluidic system, inserted into the sample chamber of a conventional fluorimeter.

View Article and Find Full Text PDF

Recovery of Cr(III) by using chars from the co-gasification of agriculture and forestry wastes.

Environ Sci Pollut Res Int

August 2019

Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, Ed. J, 1649-038, Lisbon, Portugal.

The aim of the present work was to assess the efficiency of biochars obtained from the co-gasification of blends of rice husk + corn cob (biochar 50CC) and rice husk + eucalyptus stumps (biochar 50ES), as potential renewable low-cost adsorbents for Cr(III) recovery from wastewaters. The two gasification biochars presented a weak porous structure (A = 63-144 m g), but a strong alkaline character, promoted by a high content of mineral matter (59.8% w/w of ashes for 50CC biochar and 81.

View Article and Find Full Text PDF
Article Synopsis
  • * It included 120 participants aged 40-70 over a period of 56 days, split into two groups receiving either the VMP or a placebo, with various blood nutrient levels and heart health biomarkers measured throughout.
  • * Results showed that VMP supplementation increased key nutrients like quercetin and vitamin C, while also reducing harmful heart health markers such as homocysteine and gamma-glutamyl transferase, suggesting overall heart health benefits from the VMP.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!