Multiresistant Acinetobacter baumannii, a common etiologic agent of severe nosocomial infections in compromised hosts, usually harbors aac(6')-Ib. This gene specifies resistance to amikacin and other aminoglycosides, seriously limiting the effectiveness of these antibiotics. An antisense oligodeoxynucleotide (ODN4) that binds to a duplicated sequence on the aac(6')-Ib mRNA, one of the copies overlapping the initiation codon, efficiently inhibited translation in vitro. An isosequential nuclease-resistant hybrid oligomer composed of 2',4'-bridged nucleic acid-NC (BNA(NC)) residues and deoxynucleotides (BNA(NC)-DNA) conjugated to the permeabilizing peptide (RXR)4XB ("X" and "B" stand for 6-aminohexanoic acid and β-alanine, respectively) (CPPBD4) inhibited translation in vitro at the same levels observed in testing ODN4. Furthermore, CPPBD4 in combination with amikacin inhibited growth of a clinical A. baumannii strain harboring aac(6')-Ib in liquid cultures, and when both compounds were used as combination therapy to treat infected Galleria mellonella organisms, survival was comparable to that seen with uninfected controls.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538503PMC
http://dx.doi.org/10.1128/AAC.01304-15DOI Listing

Publication Analysis

Top Keywords

resistance amikacin
8
acinetobacter baumannii
8
2'4'-bridged nucleic
8
hybrid oligomer
8
inhibited translation
8
translation vitro
8
inhibition aac6'-ib-mediated
4
aac6'-ib-mediated resistance
4
amikacin acinetobacter
4
baumannii antisense
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!