The aim of this study was to optimize and assess the potential of nanostructured lipid carriers (NLC), prepared by the hot ultrasonication method, as carrier for methotrexate (MTX), highlighting the application of factorial design. Preliminary screening drug/lipid solubility, allowed us to select Witepsol(®) E85 as the solid lipid and Mygliol(®) 812 as liquid lipid for the NLC loaded with MTX. Then, a 3-level, 3-factor Box-Behnken design and validated by ANOVA analysis; the correspondence between the predicted values and those measured experimentally confirmed the robustness of the design. Properties of optimized MTX-loaded NLCs such as morphology, size, zeta potential, entrapment efficiency, storage stability, in vitro drug release and cytotoxicity were investigated. NLCs loaded with MTX exhibited spherical shape with 252-nm, a polydispersity of 0.06±0.02, zeta potential of -14 mV and an entrapment efficiency of 87%. In vitro release studies revealed a fast initial release followed by a prolonged release of MTX from the NLC up to 24-h. The release kinetics of the optimized NLC best fitted the Peppas-Korsmeyer model for physiological and inflammatory environments and the Hixson-Crowell model skin simulation conditions. No toxicity was observed in fibroblasts. Thus, the optimized MTX-loaded NLC have the potential to be exploited as delivery system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2015.07.013DOI Listing

Publication Analysis

Top Keywords

nanostructured lipid
8
lipid carriers
8
loaded mtx
8
optimized mtx-loaded
8
zeta potential
8
entrapment efficiency
8
nlc
5
release
5
optimization nanostructured
4
lipid
4

Similar Publications

Controlling microbial pollutants is a significant public health concern as they cause several chronic microbial infections and illnesses. In recent years, essential oils (EOs) have become intriguing alternatives for synthetic antimicrobials due to their biodegradability, natural source extraction, and strong antibacterial properties. The bactericidal properties of alginate containing lemon essential oil were examined in this investigation.

View Article and Find Full Text PDF

Objective: The objective of this study was to explore the possibility of treating heart failure in rats by delivering mRNA of 24-dehydrocholesterol reductase (DHCR24) into the body through lipid nanoparticles (LNPs).

Methods: We established a heart failure rat model using doxorubicin. The experiment was divided into blank, model, mRNA stock solution cardiac injection, mRNA stock solution intravenous injection, LNP-mRNA stock solution cardiac injection, and LNP-mRNA stock solution intravenous injection groups.

View Article and Find Full Text PDF

Characterization and Biomedical Applications of Electrospun PHBV Scaffolds Derived from Organic Residues.

Int J Mol Sci

December 2024

Department of Chemical Engineering, Barcelona East School of Engineering (EEBE), Polytechnic University of Catalonia, Av. Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain.

This study explores the characterization and application of poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV) synthesized from organic residues, specifically milk and molasses. Six PHBV samples with varying 3-hydroxyvalerate (3HV) content (7%, 15%, and 32%) were analyzed to assess how 3HV composition influences their properties. Comprehensive characterization techniques, including NMR, FTIR, XRD, DSC, TGA, and tensile-stress test, were used to evaluate the molecular structure, thermal properties, crystalline structure, and mechanical behavior.

View Article and Find Full Text PDF

This study aimed to investigate whether the water-soluble pharmaceutical form of phosphatidylcholine nanoparticles (wPC) stimulated the catalytic activity of CYP enzymes 2C9 and 2D6. We have shown that electroenzymatic CYP2C9 catalysis to nonsteroidal anti-inflammatory drug naproxen as a substrate was enhanced from 100% to 155% in the presence of wPC in media. Electroenzymatic CYP2D6 activity in the presence of the adrenoceptor-blocking agent bisoprolol as a substrate was elevated significantly from 100% to 144% when wPC was added to potassium phosphate buffer solution.

View Article and Find Full Text PDF

Background: The in vitro propagation of halophytes is innovative perspective for sustainable agriculture, conservation of natural plants and essential raw materials for industry due to increasing soil salinization and decreasing freshwater availability. Sarcocornia fruticosa, a halophytic plant, may hold promise for biosaline production systems and achieve bioactive products. Understanding the salt tolerance mechanisms of halophytes through elicitors can enhance the production of secondary metabolites, such as phenolics and flavonoids, under saline environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!