Mutational acquired resistance is a major challenge in cancer therapy. Somatic tumours harbouring some oncogenic mutations are characterised by a high mortality rate. Surprisingly, preclinical evaluation methods do not show clearly resistance of mutated cancers to some drugs. Here, we implemented Raman spectral imaging to investigate the oncogenic mutation resistance to epidermal growth factor receptor targeting therapy. Colon cancer cells with and without oncogenic mutations such as KRAS and BRAF mutations were treated with erlotinib, an inhibitor of epidermal growth factor receptor, in order to detect the impact of these mutations on Raman spectra of the cells. Clinical studies suggested that oncogenic KRAS and BRAF mutations inhibit the response to erlotinib therapy in patients, but this effect is not observed in vitro. The Raman results indicate that erlotinib induces large spectral changes in SW-48 cells that harbour wild-type KRAS and BRAF. These spectral changes can be used as a marker of response to therapy. HT-29 cells (BRAF mutated) and SW-480 cells (KRAS mutated) display a smaller and no significant response, respectively. However, the erlotinib effect on these cells is not observed when phosphorylation of extracellular-signal-regulated kinase and AKT is monitored by Western blot, where this phosphorylation is the conventional in vitro test. Lipid droplets show a large response to erlotinib only in the case of cells harbouring wild-type KRAS and BRAF, as indicated by Raman difference spectra. This study shows the great potential of Raman spectral imaging as an in vitro tool for detecting mutational drug resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4604500PMC
http://dx.doi.org/10.1007/s00216-015-8875-zDOI Listing

Publication Analysis

Top Keywords

kras braf
16
raman spectral
12
spectral imaging
12
response erlotinib
12
cancer therapy
8
oncogenic mutations
8
epidermal growth
8
growth factor
8
factor receptor
8
braf mutations
8

Similar Publications

Gallbladder cancer (GBC) is an aggressive malignancy with a poor prognosis, often diagnosed at advanced stages due to subtle early symptoms. Recent studies have provided a comprehensive view of GBC's genetic and mutational landscape, uncovering crucial pathways involved in its pathogenesis. Environmental exposures, particularly to heavy metals, have been linked to elevated GBC risk.

View Article and Find Full Text PDF

Screening Criteria Evaluation for Expansion in Pulmonary Neoplasias (SCREEN) II.

Can J Surg

January 2025

From the Faculty of Medicine, Dalhousie University, Halifax, N.S. (Huo); the Department of Primary Education, School of Education, University of Ioannina, Ioannina, Greece (Kontouli); the Department of Diagnostic Radiology, Dalhousie University, Halifax, N.S. (Manos); the Department of Pathology, Dalhousie University, Halifax, N.S. (Xu, Fris); the Department of Urology, Dalhousie University, Halifax, N.S. (Chun); the Division of Thoracic Surgery, Department of Surgery, Dalhousie University, Halifax, N.S. (Wallace, French)

Background: There is a need to expand eligibility criteria for lung cancer screening beyond age and smoking history. In this study, we sought to assess whether light-or-never-smokers and heavy smokers differ in molecular and immunologic markers based on conventional lung cancer screening criteria.

Methods: We conducted a retrospective review of lung cancer cases from 2005 to 2018 at a tertiary Canadian institution.

View Article and Find Full Text PDF

BRAF mutations in colorectal cancer (CRC) comprise three functional classes: Class 1 (V600E) with strong constitutive activation, Class 2 with pathogenic kinase activity lower than Class 1, and Class 3 which paradoxically lacks kinase activity. Non-Class 1 mutations associate with better prognosis, microsatellite stability, distal tumour location and better anti-EGFR response. Analysis of 13 CRC cohorts (n=6,605 tumours) compared Class 1 (n=709, 10.

View Article and Find Full Text PDF

Same-day molecular testing for targetable mutations in solid tumor cytopathology-The next frontier of the rapid on-site evaluation.

Cancer Cytopathol

January 2025

Molecular Diagnostic Laboratory, Section of Cytopathology, Anatomic Pathology Department, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

Introduction: This study aimed to assess the feasibility of implementing the Idylla system, an ultra-rapid, cartridge-based assay, as an extension of rapid on-site evaluation (ROSE) in cytology. The authors conducted a pilot validation study on specimens from non-small cell lung carcinoma, thyroid carcinoma, and melanoma, evaluating four assays designed to detect alterations in KRAS, EGFR, BRAF, gene fusions, and expression imbalances in ALK, ROS1, RET, NTRK1/2/3, and MET exon 14 skipping transcripts. They investigated the feasibility of providing accurate biomarker molecular testing results in a cytopathology laboratory within hours of specimen collection.

View Article and Find Full Text PDF

Background: Metastatic colorectal cancer (mCRC) is the main cause of CRC mortality, with limited treatment options. Although immunotherapy has benefited some cancer patients, mCRC typically lacks the molecular features that respond to this treatment. However, recent studies indicate that the immune microenvironment of mCRC may be modified to enhance the effect of immune checkpoint inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!