We investigated the effects of fermented milk product containing isoleucine-proline-proline, valine-proline-proline and plant sterol esters (Pse) on plasma lipids, blood pressure (BP) and its determinants systemic vascular resistance and cardiac output. In a randomised, double-blind, placebo-controlled study, 104 subjects with the metabolic syndrome (MetS) were allocated to three groups in order to receive fermented milk product containing (1) 5 mg/d lactotripeptides (LTP) and 2 g/d plant sterols; (2) 25 mg/d LTP and 2 g/d plant sterols; (3) placebo for 12 weeks. Plasma lipids and home BP were monitored. Haemodynamics were examined in a laboratory using radial pulse wave analysis and whole-body impedance cardiography in the supine position and during orthostatic challenge. There were no differences between the effects of the two treatments and placebo on the measurements of BP at home or on BP, systemic vascular resistance index and cardiac index in the laboratory, neither in the supine nor in the upright position. The changes in plasma LDL-cholesterol concentration were - 0.1 (95% CI - 0.3, 0.1 and - 0.3, 0.0) mmol/l in the 5 and 25 mg/d LTP groups, respectively, and +0.1 (95% CI - 0.1, 0.3) mmol/l during placebo (P= 0.024). Both at baseline and at week 12, the increase in systemic vascular resistance during head-up tilt was lower in the 25 mg/d LTP group than in the 5 mg/d LTP group (P< 0.01), showing persistent differences in cardiovascular regulation between these groups. In subjects with the MetS, intake of LTP and Pse in fermented milk product showed a lipid-lowering effect of borderline significance, while no antihypertensive effect was observed at home or in the laboratory.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114515002032DOI Listing

Publication Analysis

Top Keywords

fermented milk
16
milk product
16
mg/d ltp
16
systemic vascular
12
vascular resistance
12
plant sterol
8
sterol esters
8
subjects metabolic
8
randomised double-blind
8
double-blind placebo-controlled
8

Similar Publications

Whey fermentation could produce bioactive substances with immunomodulatory effects, metabolic syndrome modulation, and antioxidant properties, thereby imparting functional characteristics to products and facilitating the development of novel foods with health-promoting potential. A non-targeted metabolomics approach using liquid chromatography-mass spectrometry (LC-MS) was employed to investigate changes in the metabolite profiles of whey fermented by strain KM812 over varying fermentation durations. The findings demonstrated a progressive enrichment of metabolites over time.

View Article and Find Full Text PDF

Pediococcus pentosaceus is well known for its probiotic properties, including roles in improving health, antimicrobial production, and enhancing fermented food quality. This study aimed to comprehensively analyze the whole genome of P. pentosaceus MBBL6, isolated from healthy cow milk, to assess its probiotic and antimicrobial potentials.

View Article and Find Full Text PDF

Different percentages of jujube yrup (0%, 3%, 6% and 9%) were incorporated into yak milk and fermented using the fermenting agent . The quality characteristics and antioxidant activity of the resulting yogurt were evaluated at days 0, 7, 14, 21 and 28. The results indicated that the pH and acidity of the yogurt were not significantly influenced by the varying additions of jujube syrup during storage ( > 0.

View Article and Find Full Text PDF

The objective of this study was to evaluate the effects of supplementing an essential oil blend (0.16 g/kg DM of carvacrol, eugenol, thymol, and capsaicin) and monensin (17.6 mg/kg DM TMR) on lactation performance, feeding behavior, and rumen fermentation of high-producing dairy cows.

View Article and Find Full Text PDF

A meta-analysis of dietary inhibitors for reducing methane emissions via modulating rumen microbiota in ruminants.

J Nutr

December 2024

National Center for International Research on Animal Gut Nutrition, Jingsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing, 210095 China; College of Animal Science & Technology, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China. Electronic address:

Background: Rumen methane emissions (RME) significantly contribute to global greenhouse gas emissions, underscoring the essentials to identify effective inhibitors for RME mitigation. Despite various inhibitors shown potential in reducing RME by modulating rumen microbes, their impacts include considerable variations and inconsistency.

Objective: We aimed to quantitively assess the impacts of various methane inhibitors on RME, rumen microbial abundance and fermentation in ruminants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!