The large protein L of negative-sense RNA viruses is a multifunctional protein involved in transcription and replication of genomic RNA. It also possesses enzymatic activities involved in capping and methylation of viral mRNAs. The pathway for mRNA capping followed by the L protein of the viruses in the Morbillivirus genus has not been established, although it has been speculated that these viruses may follow the unconventional capping pathway as has been shown for some viruses of Rhabdoviridae family. We had earlier shown that the large protein L of Rinderpest virus expressed as recombinant L-P complex in insect cells as well as the ribonucleoprotein complex from purified virus possesses RNA triphosphatase (RTPase) and guanylyltransferase activities, in addition to RNA dependent RNA polymerase activity. In the present work, we demonstrate that RTPase as well as nucleoside triphosphatase (NTPase) activities are exhibited by a subdomain of the L protein in the C terminal region (a.a. 1640-1840). The RTPase activity depends absolutely on a divalent cation, either magnesium or manganese. Both the RTPase and NTPase activities of the protein show dual metal specificity. Two mutant proteins having alanine mutations in the glutamic acid residues in motif-A of the RTPase domain did not show RTPase activity, while exhibiting reduced NTPase activity suggesting overlapping active sites for the two enzymatic functions. The RTPase and NTPase activities of the L subdomain resemble those of the Vaccinia capping enzyme D1 and the baculovirus LEF4 proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2015.07.026 | DOI Listing |
Int J Mol Sci
December 2024
Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea.
and its major compound dieckol, both natural marine products, possess antioxidant, anti-inflammatory, and metabolic-regulating effects. Zika virus (ZIKV), an arbovirus from the family, is transmitted by mosquitoes and causes serious illnesses in humans. This study aimed to evaluate the anti-ZIKV potential of and dieckol.
View Article and Find Full Text PDFJ Virol
December 2024
Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, Vienna, Austria.
Unlabelled: Classical swine fever virus (CSFV) is a member of the genus within the family . The enveloped particles contain a plus-stranded RNA genome encoding a single large polyprotein. The processing of this polyprotein undergoes dynamic changes throughout the infection cycle.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
December 2024
Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA. Electronic address:
The acquisition of ferrous iron (Fe) is crucial for the survival of many pathogenic bacteria living within acidic and/or anoxic conditions such as Vibrio cholerae, the causative agent of the disease cholera. Bacterial pathogens utilize iron as a cofactor to drive essential metabolic processes, and the primary prokaryotic Fe acquisition mechanism is the ferrous iron transport (Feo) system. In V.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
Japanese encephalitis virus (JEV) NS2B-NS3 is a protein complex composed of NS3 proteases and an NS2B co-factor. The N-terminal protease domain (180 residues) of NS3 (NS3(pro)) interacts directly with a central 40-amino acid hydrophilic domain of NS2B (NS2B(H)) to form an active serine protease. In this study, the recombinant NS2B(H)-NS3(pro) proteases were prepared in and used to compare the enzymatic activity between genotype I (GI) and III (GIII) NS2B-NS3 proteases.
View Article and Find Full Text PDFBioorg Chem
December 2024
São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!