Competing C-Br and O-NO Photofission upon Excitation of BrCH2CH2ONO at 193 nm.

J Phys Chem A

The James Franck Institute and Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 United States.

Published: December 2015

This study characterizes two of the primary photodissociation channels of 2-bromoethyl nitrite, BrCH2CH2ONO, at 193 nm and the subsequent unimolecular dissociation channels of the nascent vibrationally excited BrCH2CH2O radicals produced from the O-NO bond photofission. We use a crossed laser-molecular beam scattering apparatus with electron bombardment detection. Upon photodissociation of BrCH2CH2ONO at 193 nm, the measured branching ratio between primary O-NO photofission and C-Br photofission is 3.9:1 (O-NO/C-Br). The measured O-NO photofission recoil kinetic energy distribution (P(ET)) peaks near 30 kcal/mol and extends from 20 to 50 kcal/mol. We use the O-NO photofission P(ET) to characterize the internal energy distribution in the nascent ground-electronic-state BrCH2CH2O radicals. At 193 nm, all of the BrCH2CH2O radicals are formed with enough internal energy to unimolecularly dissociate to CH2Br + H2CO or to BrCH2CHO + H. We also investigated the possibility of the BrCH2CH2O → CH2CHO + HBr reaction arising from the vibrationally excited BrCH2CH2O radicals produced from O-NO primary photodissociation. Signal strengths at HBr(+), however, demonstrate that the vinoxy product does not have HBr as a cofragment, so the BrCH2CH2O → HBr + vinoxy channel is negligible compared to the CH2Br + H2CO channel. We also report our computational prediction of the unimolecular dissociation channels of the vibrational excited CH2CH2ONO radical resulting from C-Br bond photofission. Our theoretical calculations on the ground-state CH2CH2ONO potential energy surface at the G4//B3LYP/6-311++G(3df,2p) level of theory give the energetics of the zero-point corrected minima and transition states. The lowest accessible barrier height for the unimolecular dissociation of CH2CH2ONO is a 12.7 kcal/mol barrier from the cis-ONO conformer, yielding NO2 + ethene. Our measured internal energy distribution of the nascent CH2CH2ONO radicals together with this computational result suggests that the CH2CH2ONO radicals will dissociate to NO2 + ethene, with a small possible branching to NO + oxirane.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.5b04162DOI Listing

Publication Analysis

Top Keywords

o-no photofission
16
brch2ch2o radicals
16
brch2ch2ono 193
12
unimolecular dissociation
12
energy distribution
12
internal energy
12
primary photodissociation
8
dissociation channels
8
vibrationally excited
8
excited brch2ch2o
8

Similar Publications

We first characterize the dissociation pathways of BrCH2CH2ONO, a substituted alkyl nitrite, upon photoexcitation at 193 nm under collision-free conditions, in a crossed laser-molecular beam scattering apparatus using vacuum ultraviolet photoionization detection. Three primary photodissociation pathways occur: photoelimination of HNO, leading to the products HNO + BrCH2CHO; C-Br bond photofission, leading to Br + CH2CH2ONO; and O-NO bond photofission, leading to NO + BrCH2CH2O. The data show that alkyl nitrites can eliminate HNO via a unimolecular mechanism in addition to the commonly accepted bulk disproportionation mechanism.

View Article and Find Full Text PDF

Competing C-Br and O-NO Photofission upon Excitation of BrCH2CH2ONO at 193 nm.

J Phys Chem A

December 2015

The James Franck Institute and Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 United States.

This study characterizes two of the primary photodissociation channels of 2-bromoethyl nitrite, BrCH2CH2ONO, at 193 nm and the subsequent unimolecular dissociation channels of the nascent vibrationally excited BrCH2CH2O radicals produced from the O-NO bond photofission. We use a crossed laser-molecular beam scattering apparatus with electron bombardment detection. Upon photodissociation of BrCH2CH2ONO at 193 nm, the measured branching ratio between primary O-NO photofission and C-Br photofission is 3.

View Article and Find Full Text PDF

We report a study of the unimolecular dissociation of BrCH2CH2O radicals produced from the photodissociation of BrCH2CH2ONO at 351/355 nm. Using both a crossed laser-molecular beam scattering apparatus with electron bombardment detection and a velocity map imaging apparatus with tunable VUV photoionization detection, we investigate the initial photodissociation channels of the BrCH2CH2ONO precursor and the subsequent dissociation of the vibrationally excited BrCH2CH2O radicals. The only photodissociation channel of the precursor we detected upon photodissociation at 351 nm was O-NO bond fission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!