Fluorescence technology pervades all areas of chemical and biological sciences. In recent years, it is being realized that traditional fluorescence can be enriched in many ways by harnessing the power of plasmonic or photonic structures that have remarkable abilities to mold the flow of optical energy. Conventional fluorescence is omnidirectional in nature, which makes it difficult to capture the entire emission. Suitably designed emission directivity can improve collection efficiency and is desirable for many fluorescence-based applications like sensing, imaging, single molecule spectroscopy, and optical communication. By incorporating fluorophores in plasmonic or photonic substrates, it is possible to tailor the optical environment surrounding the fluorophores and to modify the spatial distribution of emission. This promising approach works on the principle of near-field interaction of fluorescence with spectrally overlapping optical modes present in the substrates. In this Account, we present our studies on directional emission with different kinds of planar metallic, dielectric, and hybrid structures. In metal-dielectric substrates, the coupling of fluorescence with surface plasmons leads to directional surface-plasmon-coupled emission with characteristic dispersion and polarization properties. In one-dimensional photonic crystals (1DPC), fluorophores can interact with Bloch surface waves, giving rise to sharply directional Bloch surface wave-coupled emission. The interaction of fluorescence with Fabry-Pérot-like modes in metal-dielectric-metal substrates and with Tamm states in plasmonic-photonic hybrid substrates provides beaming emission normal to the substrate surface. These interesting features are explained in the context of reflectivity dispersion diagrams, which provide a complete picture of the mode profiles and the corresponding coupled emission patterns. Other than planar substrates, specially fabricated plasmonic nanoantennas also have tremendous potential in controlling and steering fluorescence beams. Some representative studies by other research groups with various nanoantenna structures are described. While there are complexities to near-field interactions of fluorescence with plasmonic and photonic structures, there are also many exciting possibilities. The routing of each emission wavelength along a specific direction with a given angular width and polarization will allow spatial and spectral multiplexing. Directional emission close to surface normal will be particularly useful for microscopy and array-based studies. Application-specific angular emission patterns can be obtained by varying the design parameters of the plasmonic/photonic substrates in a flexible manner. We anticipate that the ability to control the flow of emitted light in the nanoscale will lead to the development of a new generation of fluorescence-based assays, instrumentation, portable diagnostics, and emissive devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626210 | PMC |
http://dx.doi.org/10.1021/acs.accounts.5b00100 | DOI Listing |
ACS Nano
January 2025
Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
Controlling the light emitted by individual molecules is instrumental to a number of advanced nanotechnologies ranging from super-resolution bioimaging and molecular sensing to quantum nanophotonics. Molecular emission can be tailored by modifying the local photonic environment, for example, by precisely placing a single molecule inside a plasmonic nanocavity with the help of DNA origami. Here, using this scalable approach, we show that commercial fluorophores may experience giant Purcell factors and Lamb shifts, reaching values on par with those recently reported in scanning tip experiments.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Mechanical Engineering, the University of Texas at Dallas, Richardson, Texas 75080, United States.
Plasmonic nanomaterials are effective photoacoustic (PA) contrast agents with diverse biomedical applications. While silica coatings on gold nanoparticles (AuNPs) have been demonstrated to increase PA efficiency, the underlying mechanism remains elusive. Here, we systematically investigated the impact of silica coatings on PA generation under picosecond and nanosecond laser pulses.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, PR China.
Currently, to deal with the increasingly severe energy crisis and environmental consequences, photocatalytic technology is considered as a promise solution, and the construction of Z-scheme heterostructures are important strategies to maximize the utilization of solar energy and improve photocatalytic performance. Herein, a novel full spectrum-responsive Z-scheme Bi-BiVO-BiTiO heterojunction was constructed by a facile hydrothermal method without any templates or surfactants. A series of detailed analyses revealed that the novel Bi-BiVO-BiTiO heterojunction catalyst were prepared successfully.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou, 310024, China.
The integration of mid-infrared (MIR) photodetectors with built-in encryption capabilities holds immense promise for advancing secure communications in decentralized networks and compact sensing systems. However, achieving high sensitivity, self-powered operation, and reliable performance at room temperature within a miniaturized form factor remains a formidable challenge, largely due to constraints in MIR light absorption and the intricacies of embedding encryption at the device level. Here, a novel on-chip metamaterial-enhanced, 2D tantalum nickel selenide (Ta₂NiSe₅)-based photodetector, meticulously designed with a custom-engineered plasmonic resonance microstructure to achieve self-powered photodetection in the nanoampere range is unveiled.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
The Organic Photonics and Electronics Group, Department of Physics, Umeå University, SE-90187 Umeå, Sweden.
Light-emitting electrochemical cells (LECs) are promising candidates for fully solution-processed lighting applications because they can comprise a single active-material layer and air-stable electrodes. While their performance is often claimed to be independent of the electrode material selection due to the in situ formation of electric double layers (EDLs), we demonstrate conceptually and experimentally that this understanding needs to be modified. Specifically, the exciton generation zone is observed to be affected by the electrode work function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!