Systems for multiplexing homogeneous immunoassays.

Bioanalysis

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

Published: April 2016

High-throughput multiplex protein biomarker assays continue to gain significance in the fields of biomarker discovery and drug development, due to their economical use of not only the precious clinical biological samples but also expensive reagents. Among these platforms, homogeneous multiplex systems have potential for short assay run times and cost-effective reagent consumptions. However, these systems must overcome challenges of signal cross talk and biochemical cross-reactivity. Despite these obstacles, several homogeneous multiplex immunoassays have been demonstrated. These include fluorescent polarization, fluorescent resonance energy transfer with quantum dots or graphene, luminescent oxygen-channeling immunoassay coupled with aqueous two-phase systems and DNA proximity assays. The balance between speed/simplicity and high multiplexing and robustness of these homogeneous multiplex immunoassays are discussed in this review.

Download full-text PDF

Source
http://dx.doi.org/10.4155/bio.15.78DOI Listing

Publication Analysis

Top Keywords

homogeneous multiplex
12
multiplex immunoassays
8
systems
4
systems multiplexing
4
homogeneous
4
multiplexing homogeneous
4
homogeneous immunoassays
4
immunoassays high-throughput
4
multiplex
4
high-throughput multiplex
4

Similar Publications

Optical misalignment between transmitter and receiver leads to power loss and mode crosstalk in a mode division multiplexing (MDM) free-space optical (FSO) link. We report both numerical simulations and experimental results on the propagation performance of two typical vector beams, C-point polarization full Poincaré beams (FPB), and V-point polarization cylindrical vector beams (CVB), compared to homogeneous polarization scalar vortex beams (SVB) under optical misalignment. The FSO communication performance under misalignment using different transmit beams is evaluated in terms of power loss, mode crosstalk, power penalty, etc.

View Article and Find Full Text PDF

Developing Orthogonal Fluorescent RNAs for Photoactive Dual-color Imaging of RNAs in Live Cells.

Angew Chem Int Ed Engl

January 2025

Hunan University, College of Chemistry and Chemical Engineering, Yuelushan, Changsha, Hunan, 410082, P.R.China, 410082, Changsha, CHINA.

Fluorogenic RNA aptamers have revolutionized the visualization of RNAs within complex cellular processes. A representative category of them employs the derivatives of green fluorescent protein chromophore, 4-hydroxybenzlidene imidazolinone (HBI), as chromophores. However, the structural homogeneity of their chromophoric backbones causes severe cross-reactivity with other homologous chromophores.

View Article and Find Full Text PDF

Biological systems are complex, encompassing intertwined spatial, molecular and functional features. However, methodological constraints limit the completeness of information that can be extracted. Here, we report the development of INSIHGT, a non-destructive, accessible three-dimensional (3D) spatial biology method utilizing superchaotropes and host-guest chemistry to achieve homogeneous, deep penetration of macromolecular probes up to centimeter scales, providing reliable semi-quantitative signals throughout the tissue volume.

View Article and Find Full Text PDF

Information propagation dynamics on heterogeneous-homogeneous coupling bi-layer networks.

Sci Rep

December 2024

State Key Laboratory of Media Convergence and Communication, Communication University of China, Beijing, 100024, China.

The proliferation of multi-platform network information has expanded communication channels for users, enabling the integration and dissemination of information across both Social Networking Services (SNS)-type app and Instant Message (IM)-type app. With the intensification of convergent communication, some users in the two types of apps show active alternation in spreading information to each other's platforms. The study of the evolution trend of information in different platforms is of great practical significance for the mastery of the communication law.

View Article and Find Full Text PDF

Graph Neural Networks (GNN) emerged as a deep learning framework to generate node and graph embeddings for downstream machine learning tasks. Popular GNN-based architectures operate on networks of single node and edge type. However, a large number of real-world networks include multiple types of nodes and edges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!