The blood-brain barrier (BBB) or blood-spinal cord barrier (BSCB) formed by capillary endothelial cells provides a physical wall between the central nervous system (CNS) and circulating blood with highly selective permeability. BBB/BSCB disruption by activation of matrix metalloproteinases (MMPs) has been shown to result in further neurological damage after CNS injury. Recently it has been discovered that estrogen attenuates BBB/BSCB disruption in in vitro and in vivo models. However, the molecular mechanism underlying the estrogen-mediated attenuation of BBB/BSCB disruption has not been elucidated fully. In the present study, we found that 17β-estradiol (E2) suppresses nuclear factor-κB-dependent MMP-1b, MMP-2, MMP-3, MMP-9, MMP-10, and MMP-13 gene activation in microvessel endothelial bEnd.3 cells subjected to oxygen and glucose deprivation/reperfusion injury. E2 induced the recruitment of ERα and nuclear receptor corepressor to the nuclear factor-κB binding site on the MMPs' gene promoters. Consistently, ER antagonist ICI 182.780 showed opposite effects of E2. We further found that E2 attenuates tight junction disruption through the decreased degradation of tight junction proteins in bEnd.3 cells subjected to oxygen and glucose deprivation-reperfusion injury. In addition, E2 suppressed the up-regulation of MMP expression, leading to a decreased BSCB disruption in the injured spinal cord. In conclusion, we discovered the molecular mechanism underlying the protective role of estrogenin BBB/BSCB disruption using an in vitro and in vivo model. Our study suggests that estrogens may provide a potential therapeutic intervention for preserving BBB/BSCB integrity after CNS injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414681 | PMC |
http://dx.doi.org/10.1210/ME.2015-1124 | DOI Listing |
Mol Neurobiol
March 2019
Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
It is important to understand the molecular mechanisms of barrier disruption in the central nervous system (CNS) of patients with multiple sclerosis (MS). The purpose of the present study was to clarify whether claudin-11 is involved in the disruption of two endothelial barriers (blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB)) and two epithelial barriers (blood-arachnoid barrier (BAB) and blood-CSF barrier (BCSFB)) in the CNS in MS. Immunohistochemical analysis revealed that, in both normal human and mouse, claudin-11 is co-localized with claudin-5 in the brain and spinal cord capillaries.
View Article and Find Full Text PDFMol Endocrinol
September 2015
Department of Life Science (W.N., W.-S.K., B.-G.J.), Sogang University, Seoul 121-742, Korea; and Age-Related and Brain Diseases Research Center (J.Y.L., T.Y.Y.) and Department of Biochemistry and Molecular Biology (T.Y.Y.), School of Medicine, Kyung Hee University, Seoul 130-701, Korea.
The blood-brain barrier (BBB) or blood-spinal cord barrier (BSCB) formed by capillary endothelial cells provides a physical wall between the central nervous system (CNS) and circulating blood with highly selective permeability. BBB/BSCB disruption by activation of matrix metalloproteinases (MMPs) has been shown to result in further neurological damage after CNS injury. Recently it has been discovered that estrogen attenuates BBB/BSCB disruption in in vitro and in vivo models.
View Article and Find Full Text PDFJ Immunol
September 2014
Centre de Recherche du Centre Hospitalier Universitaire de Québec-Centre Hospitalier de l'Université Laval, Quebec, Quebec G1V 4G2, Canada; Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, Quebec G1V 0A6, Canada;
Disruption of the blood-brain and blood-spinal cord barriers (BBB and BSCB, respectively) and immune cell infiltration are early pathophysiological hallmarks of multiple sclerosis (MS), its animal model experimental autoimmune encephalomyelitis (EAE), and neuromyelitis optica (NMO). However, their contribution to disease initiation and development remains unclear. In this study, we induced EAE in lys-eGFP-ki mice and performed single, nonterminal intravital imaging to investigate BSCB permeability simultaneously with the kinetics of GFP(+) myeloid cell infiltration.
View Article and Find Full Text PDFInt Rev Neurobiol
November 2012
Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA.
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease with a complicated and poorly understood pathogenesis. Strong evidence indicates impairment of all neurovascular unit components including the blood-brain and blood-spinal cord barriers (BBB/BSCB) in both patients and animal models. The present review provides an updated analysis of the microvascular pathology and impaired BBB/BSCB in ALS.
View Article and Find Full Text PDFBrain Res
June 2011
Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, Tampa, FL 33612, USA.
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease with a complicated pathogenesis. Compelling evidence indicates impairment of all neurovascular unit components including the blood-brain and blood-spinal cord barriers (BBB/BSCB) in both patients and animal models, leading to classification of ALS as a neurovascular disease. The present review provides an updated analysis of the normal and impaired BBB/BSCB, focusing on the ALS-altered barrier.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!