Anelastic materials exhibit gradual full recovery of deformation once a load is removed, leading to dissipation of internal mechanical energy. As a consequence, anelastic materials are being investigated for mechanical damping applications. At the macroscopic scale, however, anelasticity is usually very small or negligible, especially in single-crystalline materials. Here, we show that single-crystalline ZnO and p-doped Si nanowires can exhibit anelastic behaviour that is up to four orders of magnitude larger than the largest anelasticity observed in bulk materials, with a timescale on the order of minutes. In situ scanning electron microscope tests of individual nanowires showed that, on removal of the bending load and instantaneous recovery of the elastic strain, a substantial portion of the total strain gradually recovers with time. We attribute this large anelasticity to stress-gradient-induced migration of point defects, as supported by electron energy loss spectroscopy measurements and also by the fact that no anelastic behaviour could be observed under tension. We model this behaviour through a theoretical framework by point defect diffusion under a high strain gradient and short diffusion distance, expanding the classic Gorsky theory. Finally, we show that ZnO single-crystalline nanowires exhibit a high damping merit index, suggesting that crystalline nanowires with point defects are promising materials for energy damping applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nnano.2015.135 | DOI Listing |
ACS Appl Mater Interfaces
March 2024
Institute for Manufacturing Technology of Ceramic Components and Composites, University of Stuttgart, Stuttgart 70569, Germany.
Compositionally complex oxides (CCOs) or high-entropy oxides (HEOs) are new multielement oxides with unexplored physical and functional properties. In this work, we report fluorite structure-derived compositionally complex zirconia with composition Zr(GdPrNdSmY)O ( = 0.1 and 0.
View Article and Find Full Text PDFSci Rep
October 2023
Department of Physics E. Pancini, University of Naples Federico II, Naples, Italy.
The rupture process of the recent moderate-to-large earthquakes in the Zagros area along the Iran plateau is investigated by analysing the strong motion data provided by the Iranian Building and Housing Research Centre (BHRC). The selected dataset includes the largest and deadliest 2017 Mw 7.3, Iran-Iraq (Ezgeleh) earthquake.
View Article and Find Full Text PDFSci Rep
July 2022
Dipartimento di Fisica "E. R. Caianiello", Università di Salerno, 84084, Fisciano (SA), Italy.
Sub surface operations for energy production such as gas storage, fluid injection or hydraulic fracking modify the physical properties of the crust, in particular seismic velocity and anelastic attenuation. Continuously measuring these properties may be crucial to monitor the status of the reservoir. Here we propose a not usual use of the empirical ground-motion prediction equations (GMPEs) to monitor large-scale medium properties variations in a reservoir during fluid injection experiments.
View Article and Find Full Text PDFNat Commun
June 2022
Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.
Mechanical properties of hydrogels are crucial to emerging devices and machines for wearables, robotics and energy harvesters. Various polymer network architectures and interactions have been explored for achieving specific mechanical characteristics, however, extreme mechanical property tuning of single-composition hydrogel material and deployment in integrated devices remain challenging. Here, we introduce a macromolecule conformational shaping strategy that enables mechanical programming of polymorphic hydrogel fiber based devices.
View Article and Find Full Text PDFNat Mater
October 2021
Center for Advancing Materials Performance from the Nanoscale and Hysitron Applied Research Center in China, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.
Hard and brittle materials usually exhibit a much lower strength when loaded in tension than in compression. However, this common-sense behaviour may not be intrinsic to these materials, but arises from their higher flaw sensitivity to tensile loading. Here, we demonstrate a reversed and unusually pronounced tension-compression asymmetry (tensile strength exceeds compressive strength by a large margin) in submicrometre-sized samples of isotropic amorphous silicon.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!