Unlabelled: The substorm current wedge (SCW) is a fundamental component of geomagnetic substorms. Models tend to describe the SCW as a simple line current flowing into the ionosphere toward dawn and out of the ionosphere toward dusk, linked by a westward electrojet. We use multispacecraft observations from perigee passes of the Cluster 1 and 4 spacecraft during a substorm on 15 January 2010, in conjunction with ground-based observations, to examine the spatial structuring and temporal variability of the SCW. At this time, the spacecraft traveled east-west azimuthally above the auroral region. We show that the SCW has significant azimuthal substructure on scales of 100 km at altitudes of 4000-7000 km. We identify 26 individual current sheets in the Cluster 4 data and 34 individual current sheets in the Cluster 1 data, with Cluster 1 passing through the SCW 120-240 s after Cluster 4 at 1300-2000 km higher altitude. Both spacecraft observed large-scale regions of net upward and downward field-aligned current, consistent with the large-scale characteristics of the SCW, although sheets of oppositely directed currents were observed within both regions. We show that the majority of these current sheets were closely aligned to a north-south direction, in contrast to the expected east-west orientation of the preonset aurora. Comparing our results with observations of the field-aligned current associated with bursty bulk flows (BBFs), we conclude that significant questions remain for the explanation of SCW structuring by BBF-driven "wedgelets." Our results therefore represent constraints on future modeling and theoretical frameworks on the generation of the SCW.

Key Points: The substorm current wedge (SCW) has significant azimuthal structureCurrent sheets within the SCW are north-south alignedThe substructure of the SCW raises questions for the proposed wedgelet scenario.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4497475PMC
http://dx.doi.org/10.1002/2013JA019302DOI Listing

Publication Analysis

Top Keywords

substorm current
12
current wedge
12
current sheets
12
scw
10
current
9
azimuthal substructure
8
wedge scw
8
scw azimuthal
8
individual current
8
sheets cluster
8

Similar Publications

We present a study on the dynamical variations of geoelectric fields E during the intense geomagnetic storm of April 23-24, 2023. The storm is caused by the interplanetary counterpart of a coronal mass ejection erupted from the Sun in association with an M1.7 X-ray flare.

View Article and Find Full Text PDF

The ionospheric conductance is the major quantity that determines the interaction of the magnetosphere with the ionosphere, where the magnetosphere is the large region of space affected by Earth's geomagnetic field, and the ionosphere is its electrically conducting inner boundary, lying right on the edge of the atmosphere. Storms and substorms in space dissipate their energy through ionospheric currents, which heat the atmosphere and disrupt satellite orbits. The ionospheric conductance has, heretofore, been estimated using the staticized physics known as electrostatic theory, which finds that it can be computed by integrating the zero-frequency conductivity along the lines of Earth's geomagnetic field.

View Article and Find Full Text PDF

In the present study we examine three substorm events, Events 1-3, focusing on the spatio-temporal development of auroral electrojets (AEJs) before auroral breakup. In Events 1 and 2, auroral breakup was preceded by the equatorward motion of an auroral form, and the ground magnetic field changed northward and southward in the west and east of the expected equatorward flow, respectively. Provided that these magnetic disturbances were caused by local ionospheric Hall currents, this feature suggests that the equatorward flow turned both eastward and westward as it reached the equatorward part of the auroral oval.

View Article and Find Full Text PDF

Identifying the nature and source of ultra-low frequencies (ULF) waves ( ⪅ 4 mHz) at discrete frequencies in the Earth's magnetosphere is a complex task. The challenge comes from the simultaneous occurrence of externally and internally generated waves, and the ability to robustly identify such perturbations. Using a recently developed robust spectral analysis procedure, we study an interval that exhibited in magnetic field measurements at geosynchronous orbit and in-ground magnetic observatories both internally supported and externally generated ULF waves.

View Article and Find Full Text PDF

Mesoscale structures in Earth's magnetotail are a primary feature of particle transport to the inner magnetosphere during storms and substorms. We demonstrate that such structures can be observed in energetic neutral atom (ENA) data which can provide remote, global images of the magnetosphere. In particular, we present localized regions of increased ion temperatures that appear in equatorial ion temperature maps calculated from Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) ENA data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!