A new experimental phase diagram investigation of Cu-Sb.

Monatsh Chem

Department of Inorganic Chemistry/Materials Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna, Austria.

Published: August 2012

Abstract: The binary system Cu-Sb is a constituent system that is studied in investigations of technically important ternary and quaternary alloy systems (e.g., casting alloys and lead-free solders). Although this binary system has been thoroughly investigated over the last century, there are still some uncertainties regarding its high-temperature phases. Thus, parts of its phase diagram have been drawn with dashed lines in reviews published in the literature. The aim of this work was to resolve these uncertainties in the current phase diagram of Cu-Sb by performing XRD, SEM-EDX, EPMA, and DTA. The results from thermal analysis agreed well with those given in the literature, although some modifications due to the invariant reaction temperatures were necessary. In particular, reactions located on the Cu-rich side of the nonquenchable high-temperature β phase (BiF-type) left considerable scope for interpretation. Generally, the structural descriptions of the various binary phases given in the literature were verified. The range of homogeneity of the ε phase (CuTi type) was found to be higher on the Sb-rich side. Most of the reaction temperatures were verified, but a few had to be revised, such as the eutectoid reaction [Formula: see text] at 440 °C (found to occur at 427 °C in this work) and the eutectoid reaction [Formula: see text] at 400 °C (found to occur at 440 °C in this work). Further phase transformations that had previously only been estimated were confirmed, and their characteristic temperatures were determined.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495028PMC
http://dx.doi.org/10.1007/s00706-012-0737-1DOI Listing

Publication Analysis

Top Keywords

phase diagram
12
binary system
8
reaction temperatures
8
eutectoid reaction
8
reaction [formula
8
[formula text]
8
phase
5
experimental phase
4
diagram investigation
4
investigation cu-sb
4

Similar Publications

Valsartan (VST) is an angiotensin II receptor antagonist with low oral bioavailability. The present study developed a solid self-nanoemulsifying drug delivery system (S-SNEDDS) to enhance the oral absorption and bioavailability of VST. VST-loaded liquid SNEDDS (VST@L-SNEDDS) was prepared by investigating the solubility of VST and constructing the pseudo-ternary phase diagrams.

View Article and Find Full Text PDF

Wound management remains a significant challenge due to complications such as delayed healing and microbial infections, particularly in the conditions like diabetes mellitus, vascular disorders, and immunosuppression. This study aimed to develop a chitosan-coated virgin coconut oil-asiatic acid-loaded nanoemulsion gel (CS-ASA-NEG) to enhance wound healing outcomes. A central composite design (CCD) was employed using Design Expert 11 software to optimize the nanoemulsion formulation, with ternary phase diagrams (TPD) evaluating stable regions for Tween 20: Span 80 (T20:S80) ratios.

View Article and Find Full Text PDF

Background: At present, although some studies have offered certain insights into the genetic factors related to unruptured intracranial aneurysms (uIAs), the potential genetic targets associated with uIAs remain largely unknown. Thus, this research adopted Mendelian randomization (MR) analysis to study two genome-wide association studies on uIAs, aiming to determine the reliable genetic susceptibility and potential therapeutic targets for uIAs.

Methods: This study summarizes the data of expression quantitative trait loci (eQTL) as exposure data.

View Article and Find Full Text PDF

Structural evolution of particle configurations: Zero-temperature phases under increasing confinement.

J Chem Phys

January 2025

Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.

In this study, we investigate the phase behavior and structural organization of colloidal particles in a two-dimensional (2D) system under isotropic harmonic confinement using overdamped Langevin dynamics simulations. We employ a modified mermaid potential, which introduces an additional short-distance term resulting in a null-force region, distinct from the conventional mermaid potential. This modification facilitates a richer exploration of self-assembled structures, revealing a variety of phases influenced by the interplay between confinement strength V0 and the interaction potential.

View Article and Find Full Text PDF

Revealing the catalytic oxidation mechanism of CO on α-FeO surfaces: an thermodynamic study.

Phys Chem Chem Phys

January 2025

Institute of Nanomaterials, Faculty of Materials Science, Kim Il Sung University, Ryongnam-Dong, Taesong District, Pyongyang, Democratic People's Republic of Korea.

Significant research efforts have been devoted to improving the efficiency of catalytic carbon monoxide (CO) oxidation over α-FeO-based catalysts, but details of the underlying mechanism are still under debate. Here we apply the thermodynamic method (AITM) within the density functional theory framework to investigate the phase diagram of α-FeO(0001) surfaces with various terminations and the catalytic mechanism of CO oxidation on these surfaces. By extending the conventional AITM to consider the charge state of surface defects, we build the phase diagram of α-FeO(0001) surfaces in relation to the Fermi energy as well as the oxygen chemical potential, which makes it possible to explain the influence of point defects on the surface morphology and to predict the existence of the experimentally observed functional sites such as the ferryl group (FeO) and oxygen vacancies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!