We investigated the highest constant temperature at which actinopterygian fishes can complete their lifecycles, based on an oxygen supply model for cleavage-stage eggs. This stage is one of the most heat-sensitive periods during the lifecycle, likely reflecting the exhaustion of maternally supplied heat shock proteins without new production. The model suggests that average eggs would not develop normally under a constant temperature of about 36 °C or higher. This estimate matches published empirical values derived from laboratory and field observations. Spermatogenesis is more heat sensitive than embryogenesis in fishes, so the threshold may indeed be lower, at about 35 °C, unless actinopterygian fishes evolve heat tolerance during spermatogenesis as in birds. Our model also predicts an inverse relationship between egg size and temperature, and empirical data support this prediction. Therefore, the average egg size, and hence hatching size, is expected to shrink in a greenhouse world but a feeding function prohibits the survival of very small hatchlings, posing a limit to the shrinkage. It was once suggested that a marine animal community may be sustained under temperatures up to about 38 °C, and this value is being used, for example, in paleotemperature reconstruction. A revision of the value is overdue. (199/200).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648408 | PMC |
http://dx.doi.org/10.1038/srep11597 | DOI Listing |
J Comput Chem
January 2025
Instituto de Química, Universidade de Brasília, Brasília, Brazil.
This study aims to shed light on the mechanism and kinetics of 1,4-dioxane degradation by hydroxyl radical (OH) across various solvation conditions to evaluate electronic and structural properties at the MP2/aug-cc-pVTZ level. Transition states (TS) structures determined in the gas phase and SMD solvation model reveal similar hydrogen abstraction patterns. In contrast, the explicit solvation model (ES) introduces significant changes, suggesting a kinetic preference for axial pathways.
View Article and Find Full Text PDFFoods
January 2025
Faculty of Technology Novi Sad, University of Novi Sad, Boulevard cara Lazara 1, 21000 Novi Sad, Serbia.
Mushrooms are a raw material rich in many nutritional compounds, and that is why a number of them are widely known as functional food. They contain fatty acids, carbohydrates, lycopene, sterols, lovastatin, trace elements, and other valuable compounds that show a wide range of properties, such as hepatoprotective, anticancer, antiviral, etc. For more efficient utilisation of mushrooms' biologically active substances, widespread supercritical carbon dioxide extraction (Sc-CO) was used as an efficient way to isolate the high-value phytoconstituents from this type of raw material.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China.
In this work, the rare earth element Ce was incorporated into the A-site of SrBaNbO ferroelectric ceramics, which was prepared using the conventional solid state reaction method and sintered under different procedures. A comprehensive investigation was conducted to assess the impact of Ce doping and varying sintering procedures on both the relaxor characteristics and electrical properties of the ceramics. When sintered at 1300 °C for 4 h, the grains exhibited an isometric shape.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Mechanical Engineering, Czech Technical University in Prague, 16629 Prague, Czech Republic.
The need to reduce energy consumption means that it is necessary to reduce the weight of vehicles. However, a thick wall of massive elements promotes the formation of casting defects, which must be removed by either plastic processing (straightening) or welding methods (surface and internal discontinuities). Basic alloys contain Al and Zn as the main alloying elements.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
A.M. Butlerov Chemical Institute, Kazan Federal University, Kazan 420008, Russia.
This article is devoted to the development of a new method for the synthesis of magnetic cobalt boride nanoparticles using a low-energy approach. The obtained nanoparticles were used to create composite materials based on industrial thermoplastic ABS. The effect of different concentrations of nanoparticles on the physical, mechanical, magnetic, and dielectric properties of composite materials was studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!