The transcription factor RUNX1 is frequently mutated in myelodysplastic syndrome and leukemia. RUNX1 mutations can be early events, creating preleukemic stem cells that expand in the bone marrow. Here we show, counterintuitively, that Runx1-deficient hematopoietic stem and progenitor cells (HSPCs) have a slow growth, low biosynthetic, small cell phenotype and markedly reduced ribosome biogenesis (Ribi). The reduced Ribi involved decreased levels of rRNA and many mRNAs encoding ribosome proteins. Runx1 appears to directly regulate Ribi; Runx1 is enriched on the promoters of genes encoding ribosome proteins and binds the rDNA repeats. Runx1-deficient HSPCs have lower p53 levels, reduced apoptosis, an attenuated unfolded protein response, and accordingly are resistant to genotoxic and ER stress. The low biosynthetic activity and corresponding stress resistance provides a selective advantage to Runx1-deficient HSPCs, allowing them to expand in the bone marrow and outcompete normal HSPCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530029 | PMC |
http://dx.doi.org/10.1016/j.stem.2015.06.002 | DOI Listing |
Microbiol Res
January 2025
National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China. Electronic address:
RNase III, a ubiquitously distributed endonuclease, plays an important role in RNA processing and functions as a global regulator of gene expression. In this study, we explored the role of RNase III in mediating the oxidative stress response in Synechocystis sp. PCC 6803.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 Allée Konrad Roentgen, 67084 Strasbourg, France.
The importance of Mg2+ ions for RNA structure and function cannot be overstated. Several attempts were made to establish a comprehensive Mg2+ binding site classification. However, such descriptions were hampered by poorly modelled ion binding sites as observed in a recent cryo-EM 1.
View Article and Find Full Text PDFNat Commun
January 2025
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China.
Hyperactivation of ribosome biogenesis (RiBi) drives cancer progression, yet the role of RiBi-associated proteins (RiBPs) in breast cancer (BC) is underexplored. In this study, we perform a comprehensive multi-omics analysis and reveal that assembly and maturation factors (AMFs), a subclass of RiBPs, are upregulated at both RNA and protein levels in BC, correlating with poor patient outcomes. In contrast, ribosomal proteins (RPs) do not show systematic upregulation across various cancers, including BC.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA. Electronic address:
tRNA modifications are critical for several aspects of their functions, including decoding, folding, and stability. Using a multifaceted approach encompassing eCLIP-seq and nanopore tRNA-seq, we show that the human tRNA methyltransferase TRMT1L interacts with the component of the Rix1 ribosome biogenesis complex and binds to the 28S rRNA as well as to a subset of tRNAs. Mechanistically, we demonstrate that TRMT1L is responsible for catalyzing N2,N2-dimethylguanosine (mG) solely at position 27 of tRNA-Tyr-GUA.
View Article and Find Full Text PDFJ Cell Biol
February 2025
Department of Biochemistry, University of Colorado, Boulder, CO, USA.
Cajal bodies are essential sites for the biogenesis of small nuclear and nucleolar ribonucleoproteins. In this issue, Courvan and Parker discuss new work from Neugebauer and colleagues (https://doi.org/10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!