Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A simple, coarse-grained model of chiral, helical filaments is used to study the polymorphism of fibrous aggregates. Three generic morphologies of the aggregates are observed: ribbons, in which the filaments are joined side-by-side, twisted, helicoidal fibrils, in which filaments entwine along each other and tubular forms, with filaments wound together around a hollow core of the tube. A relative simplicity of the model allows us to supplement numerical simulations with an analytic description of the elastic properties of the aggregates. The model is capable of predicting geometric and structural characteristics of the composite structures, as well as their relative stabilities. We also investigate in detail the transitions between different morphologies of the aggregates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5sm00652j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!