It is known that secreted proteins from the anterior lateral endoderm, FGF8 and BMP2, are involved in mesodermal cardiac differentiation, which determines the first cardiac field, defined by the expression of the earliest specific cardiac markers Nkx-2.5 and Gata4. However, the molecular mechanisms responsible for early cardiac development still remain unclear. At present, microRNAs represent a novel layer of complexity in the regulatory networks controlling gene expression during cardiovascular development. This paper aims to study the role of miR130 during early cardiac specification. Our model is focused on developing chick at gastrula stages. In order to identify those regulatory factors which are involved in cardiac specification, we conducted gain- and loss-of-function experiments in precardiac cells by administration of Fgf8, Bmp2 and miR130, through in vitro electroporation technique and soaked beads application. Embryos were subjected to in situ hybridization, immunohistochemistry and qPCR procedures. Our results reveal that Fgf8 suppresses, while Bmp2 induces, the expression of Nkx-2.5 and Gata4. They also show that Fgf8 suppresses Bmp2, and vice versa. Additionally, we observed that Bmp2 regulates miR-130 -a putative microRNA that targets Erk1/2 (Mapk1) 3'UTR, recognizing its expression in precardiac cells which overlap with Erk1/2 pattern. Finally, we evidence that miR-130 is capable to inhibit Erk1/2 and Fgf8, resulting in an increase of Bmp2, Nkx-2.5 and Gata4. Our data present miR-130 as a necessary linkage in the control of Fgf8 signaling, mediated by Bmp2, establishing a negative feed-back loop responsible to achieve early cardiac specification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2015.07.007 | DOI Listing |
Folia Morphol (Warsz)
January 2025
Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan.
Background: Some mammals including the swine carry a fibrous vestigial clavicle, but a subclavius muscle (SBM) extends between the first rib and the supraspinatus muscle surface fascia. We aimed to examine development of the SBM and clavicle for finding a specific factor to provide the curious morphology.
Materials And Methods: Histological sections of early- and midterm fetuses of the swine, human and mouse were observed and compared at the almost same morphological stage.
Singapore Med J
January 2025
Department of Orthopaedic Surgery, National University Health System, Singapore.
Introduction: Increasing age is associated with an increased incidence of necrotising fasciitis. In this study, we aimed to compare the clinical presentation, investigations, microbiology and clinical outcome in elderly (age ≥60 years) and nonelderly (age <60 years) patients with extremity necrotising fasciitis.
Methods: A retrospective review of patients with extremity necrotising fasciitis who were surgically treated between January 2005 and December 2021 was conducted.
EClinicalMedicine
December 2024
Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Infant alertness and neurologic changes can reflect life-threatening pathology but are assessed by physical exam, which can be intermittent and subjective. Reliable, continuous methods are needed. We hypothesized that our computer vision method to track movement, pose artificial intelligence (AI), could predict neurologic changes in the neonatal intensive care unit (NICU).
View Article and Find Full Text PDFFront Genet
December 2024
Department of Pediatrics, West China Second University Hospital, Chengdu, Sichuan, China.
Background: Autosomal recessive cutis laxa type 1B (ARCL1B) is an extremely rare disease characterized by severe systemic connective tissue abnormalities, including cutis laxa, aneurysm and fragility of blood vessels, birth fractures and emphysema. The severity of this disease ranges from perinatal death to manifestations compatible with survival. To date, no cases have been reported in the Chinese population.
View Article and Find Full Text PDFCureus
December 2024
Internal Medicine, Kempegowda Institute of Medical Sciences, Bangalore, IND.
Sepsis-induced cardiomyopathy (SICM) is a life-threatening complication of sepsis characterized by myocardial dysfunction. SICM significantly increases mortality rates in sepsis. Despite its clinical relevance, SICM lacks a unified definition and standardized diagnostic criteria, complicating early identification and treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!