Halogen Bonding in Supramolecular Chemistry.

Chem Rev

Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom.

Published: August 2015

Download full-text PDF

Source
http://dx.doi.org/10.1021/cr500674cDOI Listing

Publication Analysis

Top Keywords

halogen bonding
4
bonding supramolecular
4
supramolecular chemistry
4
halogen
1
supramolecular
1
chemistry
1

Similar Publications

The influence of halogen-mediated interactions on halogen abstraction reactions by formyl radicals.

Phys Chem Chem Phys

January 2025

Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid, Spain.

This article reports a theoretical study on the halogen exchange reactions YX + CHO → Y + XCHO (with Y = F, Cl, Br; X = Cl, Br, I) carried out at a high level of accuracy using coupled-cluster based methodologies including CCSD(T)-F12, CCSD(T)/CBS and CCSDT(Q). Most of the reactions are exothermic at room temperature, with the exception of the reactions FI + CHO → F + ICHO and ClI + CHO → Cl + ICHO. Exothermicity follows two concurrent trends established by the strength of the bonds being cleaved and formed: Y = F < Cl < Br (X-Y bond strength) and X = Cl > Br > I (C-X bond strength).

View Article and Find Full Text PDF

Palladium-Catalyzed Oxidative Allene-Allene Cross-Coupling.

J Am Chem Soc

January 2025

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.

Direct cross-coupling reactions between two similar unactivated partners are challenging but constitute a powerful strategy for the creation of new carbon-carbon bonds in organic synthesis. [4]Dendralenes are a class of acyclic branched conjugated oligoenes with great synthetic potential for the rapid generation of structural complexity, yet the chemistry of [4]dendralenes remains an unexplored field due to their limited accessibility. Herein, we report a highly selective palladium-catalyzed oxidative cross-coupling of two allenes with the presence of a directing olefin in one of the allenes, enabling the facile synthesis of a broad range of functionalized [4]dendralenes in a convergent modular manner.

View Article and Find Full Text PDF

Introducing halogen-bonded gates into zeolitic frameworks for efficient benzene/cyclohexene/cyclohexane separation.

Chem Sci

January 2025

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-Sen University Guangzhou 510275 China

The separation of C cyclic hydrocarbons (benzene, cyclohexene, and cyclohexane) is one of the most challenging chemical processes in the petrochemical industry. Herein, we design and synthesize a new SOD-topology metal azolate framework (MAF) with aperture gating behaviour controlled by C-Br⋯N halogen bonds, which exhibits distinct temperature- and guest-dependent adsorption behaviours for benzene/cyclohexene/cyclohexane. More importantly, the MAF enables the efficient purification of benzene from its binary and ternary mixtures (selectivity up to 113 ± 2; purity up to 98% +), which is the highest record for benzene/cyclohexane/cyclohexene separation to date.

View Article and Find Full Text PDF

[Vacuum ultraviolet laser dissociation and proteomic analysis of halogenated peptides].

Se Pu

February 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Chemical modifications are widely used in research fields such as quantitative proteomics and interaction analyses. Chemical-modification targets can be roughly divided into four categories, including those that integrate isotope labels for quantification purposes, probe the structures of proteins through covalent labeling or cross-linking, incorporate labels to improve the ionization or dissociation of characteristic peptides in complex mixtures, and affinity-enrich various poorly abundant protein translational modifications (PTMs). A chemical modification reaction needs to be simple and efficient for use in proteomics analysis, and should be performed without any complicated process for preparing the labeling reagent.

View Article and Find Full Text PDF

The Orange Carotenoid Protein (OCP) is a unique water-soluble photoactive protein that plays a critical role in regulating the balance between light harvesting and photoprotective responses in cyanobacteria. The challenge in understanding OCP´s photoactivation mechanism stems from the heterogeneity of the initial configurations of its embedded ketocarotenoid, which in the dark-adapted state can form up to two hydrogen bonds to critical amino acids in the protein's C-terminal domain, and the extremely low quantum yield of primary photoproduct formation. While a series of experiments involving point mutations within these contacts helped us to identify these challenges, they did not resolve them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!