Based on the laser particle size and X-ray diffraction (XRD) analysis, 28 sediment samples collected from the inshore region of the Yellow River estuary in October 2013 were determined to discuss the influence of long-term implementation of the flow-sediment regulation scheme (FSRS, initiated in 2002) on the distributions of grain size and clay components (smectite, illite, kaolinite and chlorite) in sediments. Results showed that, after the FSRS was implemented for more than 10 years, although the proportion of sand in inshore sediments of the Yellow River estuary was higher (average value, 23.5%) than those in sediments of the Bohai Sea and the Yellow River, silt was predominated (average value, 59.1%) and clay components were relatively low (average value, 17.4%). The clay components in sediments of the inshore region in the Yellow River estuary were close with those in the Yellow River. The situation was greatly changed due to the implementation of FSRS since 2002, and the clay components were in the order of illite > smectite > chlorite > kaolinite. This study also indicated that, compared to large-scale investigation in Bohai Sea, the local study on the inshore region of the Yellow River estuary was more favorable for revealing the effects of long-term implementation of the FSRS on sedimentation environment of the Yellow River estuary.
Download full-text PDF |
Source |
---|
Saline-tolerant medicinal plants possess novel chemical constituents with high bioactivity because of their unique secondary metabolic pathways. an aquatic plant found in the coastal wetlands of the Yellow River Delta, was collected and studied in the present work. Ten drimane-type sesquiterpenoids and four triterpenoids, including six new ones (sinenseines A-F), were isolated from a whole plant of for the first time.
View Article and Find Full Text PDFSci Data
January 2025
State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
The Yadong trout (Salmo trutta), a species endemic to the Yatung River in Tibet, China, was classified as a second-class protected species in the 20th century. Now, it is considered one of the most important fishery resources in China. In this study, we assembled a near-complete genome of the S.
View Article and Find Full Text PDFTrends Plant Sci
January 2025
State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China. Electronic address:
Sci Rep
January 2025
School of Public Administration, Hohai University, Nanjing, 211100, China.
The Yellow River Basin is China's grain production base and ecological barrier, with an important strategic position. Therefore, it is of great significance to analyze spatiotemporal pattern of ecosystem services and agricultural green, and further exploring the driving mechanism of coordination using the GTWR model to examine how the Yellow River Basin's agriculture evolve sustainably. The results indicate that: (1) In 2011-2021, the Yellow River Basin's ecosystem service value showed a state of growth first and then decline, indicating that the decrease trend cannot be ignored; the Yellow River Basin has seen a steady rise in agricultural green level, with regional disparities progressively disappearing.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, 116024, China.
This study investigates the critical impact of incipient sediment motion on sediment transport estimation and riverbed evolution prediction. In this research, we examine the effects of ice cover on the vertical distribution of flow velocity, establishing a mathematical relationship between the vertical average flow velocities in open channel and ice-covered flows. This leads to the derivation of a formula for incipient motion velocity under ice cover.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!