Deferasirox-TAT(47-57) peptide conjugate as a water soluble, bifunctional iron chelator with potential use in neuromedicine.

Biometals

Departamento de Química Fundamental, Universidade de São Paulo, Av. Lineu Prestes 748, São Paulo, 05508-000, Brazil.

Published: October 2015

Deferasirox (DFX), an orally active and clinically approved iron chelator, is being used extensively for the treatment of iron overload. However, its water insolubility makes it cumbersome for practical use. In addition to this, the low efficacy of DFX to remove brain iron prompted us to synthesize and evaluate a DFX-TAT(47-57) peptide conjugate for its iron chelation properties and permeability across RBE4 cell line, an in vitro model of the blood-brain barrier. The water-soluble conjugate was able to remove labile iron from buffered solution as well as from iron overloaded sera, and the permeability of DFX-TAT(47-57) conjugate into RBE4 cells was not affected compared to parent deferasirox. The iron bound conjugate was also able to translocate through the cell membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10534-015-9873-5DOI Listing

Publication Analysis

Top Keywords

peptide conjugate
8
iron
8
iron chelator
8
conjugate
5
deferasirox-tat47-57 peptide
4
conjugate water
4
water soluble
4
soluble bifunctional
4
bifunctional iron
4
chelator potential
4

Similar Publications

Dual alarmin-receptor-specific targeting peptide systems for treatment of sepsis.

Acta Pharm Sin B

December 2024

Department of Molecular and Life Science, Hanyang University, Ansan 15588, Republic of Korea.

The pathophysiology of sepsis is characterized by a systemic inflammatory response to infection; however, the cytokine blockade that targets a specific early inflammatory mediator, such as tumor necrosis factor, has shown disappointing results in clinical trials. During sepsis, excessive endotoxins are internalized into the cytoplasm of immune cells, resulting in dysregulated pyroptotic cell death, which induces the leakage of late mediator alarmins such as HMGB1 and PTX3. As late mediators of lethal sepsis, overwhelming amounts of alarmins bind to high-affinity TLR4/MD2 and low-affinity RAGE receptors, thereby amplifying inflammation during early-stage sepsis.

View Article and Find Full Text PDF

Migraine is a debilitating headache disorder. The disease has neurovascular origin and migraine attacks can be elicited by vasodilative neuropeptides such as alpha calcitonin gene-related peptide (αCGRP). Antagonizing CGRP actions in migraine patients has proven clinically efficient.

View Article and Find Full Text PDF

Dysentery caused by Shigella species remains a major health threat to children in low- and middle-income countries. There is no vaccine available. The most advanced candidates, i.

View Article and Find Full Text PDF

A Subtype Specific Probe for Targeted Magnetic Resonance Imaging of M2 Tumor-Associated Macrophages in Brain Tumors.

Acta Biomater

January 2025

Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America. Electronic address:

Pro-tumoral M2 tumor-associated macrophages (TAMs) play a critical role in the tumor immune microenvironment (TIME), making them an important therapeutic target for cancer treatment. Approaches for imaging and monitoring M2 TAMs, as well as tracking their changes in response to tumor progression or treatment are highly sought-after but remain underdeveloped. Here, we report an M2-targeted magnetic resonance imaging (MRI) probe based on sub-5 nm ultrafine iron oxide nanoparticles (uIONP), featuring an anti-biofouling coating to prevent non-specific macrophage uptake and an M2-specific peptide ligand (M2pep) for active targeting of M2 TAMs.

View Article and Find Full Text PDF

Peptide-Bismuth Tricycles: Maximizing Stability by Constraint.

Chemistry

January 2025

Australian National University, Research School of Chemistry, Sullivans Creek Road, ACT 2601, Canberra, AUSTRALIA.

Constrained peptides possess excellent properties for identifying lead compounds in drug discovery. While it has become increasingly straightforward to discover selective high-affinity peptide ligands, especially through genetically encoded libraries, their stability and bioavailability remain significant challenges. By integrating macrocyclization chemistry with bismuth binding, we generated series of linear, cyclic, bicyclic, and tricyclic peptides with identical sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!