Intensive Hemodialysis Preserved Cardiac injury.

ASAIO J

From the *Division of Nephrology, University Health Network, Ontario, Canada; ‡Department of Medicine, University of Ottawa Heart Institute, Ontario, Canada; and §Department of Medicine, University Health Network, Toronto General Hospital Research Institute, Ontario, Canada.

Published: July 2016

Cardiac injury triggers cellular responses involving both cardiomyocytes and nonmuscle cells to process cardiac structural remodeling. End-stage renal disease (ESRD), despite conventional dialysis, is associated with adverse cardiac remodeling and increased cardiovascular events. Intensification of hemodialysis with nocturnal home hemodialysis (NHD; five sessions per week; 6-8 hours per treatment) was associated with regression of left ventricular hypertrophy and downregulation of genes in apoptosis and fibrosis. In this pilot study, we hypothesize that NHD achieves its cardiac effects in part through attenuation of innate immune activation resulting in amelioration of cardiomyocytes apoptosis and fibrosis. Eight patients (4M:4F; age, 59 ± 9 years) with ESRD were studied. Half of the cohort was converted to NHD, whereas the rest of the patients were maintained on conventional hemodialysis (CHD). At baseline, CHD was associated with an increase in cardiomyocyte apoptosis detected by flow cytometry using Annexin V (mean fluorescence index in CHD and in normal control is 1.00 ± 0.05 vs. 0.66 ± 0.01, p < 0.05). After conversion to NHD, cardiomyocyte apoptosis was reduced compared with baseline CHD situation (p < 0.05) and approached that of normal control (0.59 ± 0.09 vs. 0.66 ± 0.01, p > 0.05). The CHD serum was associated with a coordinated augmentation innate immunity pathway, significantly increasing myeloid differentiation factor-88 and interleukin-1 receptor-associated kinase-4; NHD was able to reduce their levels. Heat shock protein 60 was augmented during CHD condition and fell after NHD. In addition, CHD increased fibroblast proliferation and myofibroblast transformation. Uremia is associated with activation of common innate immune signaling pathways leading to fibrosis and apoptosis. Amelioration of uremic clearance by NHD may attenuate this pathological signaling cascade.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MAT.0000000000000255DOI Listing

Publication Analysis

Top Keywords

cardiac injury
8
apoptosis fibrosis
8
innate immune
8
baseline chd
8
cardiomyocyte apoptosis
8
normal control
8
066 001
8
001 005
8
nhd
7
chd
7

Similar Publications

Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes.

View Article and Find Full Text PDF

Introduction: Acute kidney injury involves inflammation and intrinsic renal damage, and is a common complication of severe coronavirus disease 2019 (COVID-19). Baseline chronic kidney disease (CKD) confers an increased mortality risk. We determined the renal long-term outcomes of COVID-19 in patients with baseline CKD, and the risk factors prompting renal replacement therapy (RRT) initiation and mortality.

View Article and Find Full Text PDF

Background: First responders exist in several countries and have been a prehospital emergency medical resource in Norwegian municipalities since 2010. However, the Norwegian system has not yet been studied. The aim of this study was to describe the first responder system in Central Norway and how it is used as a supplement to emergency medical services (EMS).

View Article and Find Full Text PDF

Recent studies have suggested that sVEGFR3 is involved in cardiac diseases by regulating lymphangiogenesis; however, results are inconsistent. The aim of this study was to investigate the function and mechanism of sVEGFR3 in myocardial ischemia/reperfusion injury (MI/RI). sVEGFR3 effects were evaluated in vivo in mice subjected to MI/RI, and in vitro using HL-1 cells exposed to oxygen-glucose deprivation/reperfusion.

View Article and Find Full Text PDF

Objectives: To explore patients' and carers' preferences for postdischarge surgical wound monitoring.

Design: Explanatory mixed methods study with an online survey followed by online interviews.

Setting: The online survey was distributed via the Cardiothoracic Interdisciplinary Research Network and cardiac surgery patient and public involvement groups in London and Leicester, UK.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!