β-Cyclodextrin functionalized graphene as a highly conductive and multi-site platform for DNA immobilization and ultrasensitive sensing detection.

Biosens Bioelectron

College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China. Electronic address:

Published: December 2015

A versatile nanocomposite containing β-cyclodextrin and graphene (CD-GR) was prepared through a simple chemical reduction method. The characterization experiments show that the nanocomposite remains the flake-like morphology of GR, but its solubility and stability in aqueous solution are greatly improved. Then the nanocomposite was modified at glassy carbon electrode (GCE) surface, and was used as a functional matrix for the covalent immobilization of probe DNA using 2,4,6-trichloro-1,3,5-triazine (TCT) as the crosslinker. Due to the synergetic effect of large surface area of GR and rich hydroxyl of CD, the probe density for the developed biosensor was determined to as high as 3.82×10(13) molecules cm(-2). Meanwhile, the biosensor shows high hybridization efficiency and hybridization kinetic. When the biosensor was applied for the impedance-based hybridization test, a wide linear range from 1.0×10(-16) to 1.0×10(-12) M and an ultralow detection limit of 3.4×10(-17) M were achieved. The biosensor also displays excellent stability, selectivity, and reproducibility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2015.06.018DOI Listing

Publication Analysis

Top Keywords

β-cyclodextrin functionalized
4
functionalized graphene
4
graphene highly
4
highly conductive
4
conductive multi-site
4
multi-site platform
4
platform dna
4
dna immobilization
4
immobilization ultrasensitive
4
ultrasensitive sensing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!