Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The medial and lateral styloconic sensilla, constituting the main taste organs of lepidopterous caterpillars, were investigated in the oligophagous species, Helicoverpa assulta (Guenée) (Lepidoptera: Noctuidae). In this paper, the two sensilla were morphologically and physiologically characterized by scanning electron microscopy and tip recordings, respectively. The central projections of their respective sensory neurons were mapped by anterograde staining experiments combined with confocal laser scanning microscopy. The results showed that the two sensilla are in general morphologically similar. However, the size of the peg on the medial sensillum is significantly greater than that of the lateral. Tobacco leaf saps, sinigrin, and nicotine elicited strong responses from neurons housed by the medial sensillum, whereas sucrose activated primarily the lateral sensillum. All stained neurons in either sensillum showed a projection pattern involving axons entering the subesophageal ganglion through the ipsilateral maxillary and passing further on through the ipsilateral circumesophageal connective to the tritocerebrum of the brain. In the subesophageal ganglion, the axons targeted two areas: the ventrolateral section and the region near the neuromere midline. One distinction between the staining patterns originating from the two sensilla, however, is that axons arising from the medial sensillum, and not the lateral, give off some additional neural branches in the subesophageal ganglion including a few arborizations surrounding a tract, plus a long process extending posteriorly along the midline. Differences in the central projections derived from the two sensilla styloconica have not been reported previously.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/WNR.0000000000000413 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!