Overexpression of insecticidal pilin subunit from Xenorhabdus nematophila protects transgenic tobacco and tomato plants against Helicoverpa armigera. Xenorhabdus nematophila is a pathogenic bacterium producing toxins that kill the larval host. Previously, we characterized a pilin subunit of X. nematophila which was found to be a pore-forming toxin and cytotoxic to the larval hemocytes of Helicoverpa armigera by causing agglutination and lysis of the cells. In the present study, we report the efficacy of the insecticidal pilin subunit expressed in transgenic tobacco and tomato plants for control against H. armigera. A 537 bp mrxA gene encoding the 17 kDa insecticidal pilin subunit was transferred into the genome of tobacco and tomato, respectively, via Agrobacterium-mediated transformation. The stable integration of the 537 bp mrxA gene in the transgenic plants was confirmed by Southern blot analysis and expression of mrxA gene was confirmed by RT-PCR and Western blot analyses. The transgenic plants appeared healthy and phenotypically normal but proved toxic to the insects in insect bioassays, showing 100% insect mortality and reduced damage of the transgenic plants. Based on these observations, it is suggested that pilin subunit can be used as a potential candidate for control of H. armigera and may open new strategies for pest control in agricultural plants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-015-1833-6DOI Listing

Publication Analysis

Top Keywords

pilin subunit
24
tobacco tomato
16
xenorhabdus nematophila
12
insecticidal pilin
12
mrxa gene
12
transgenic plants
12
subunit xenorhabdus
8
transgenic tobacco
8
tomato plants
8
helicoverpa armigera
8

Similar Publications

Structure of the Pseudomonas aeruginosa PAO1 Type IV pilus.

PLoS Pathog

December 2024

Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom.

Type IV pili (T4Ps) are abundant in many bacterial and archaeal species, where they play important roles in both surface sensing and twitching motility, with implications for adhesion, biofilm formation and pathogenicity. While Type IV pilus (T4P) structures from other organisms have been previously solved, a high-resolution structure of the native, fully assembled T4P of Pseudomonas aeruginosa, a major human pathogen, would be valuable in a drug discovery context. Here, we report a 3.

View Article and Find Full Text PDF

Type IV pili (T4P) produced by the pathogen Pseudomonas aeruginosa play a pivotal role in adhesion, surface motility, biofilm formation, and infection in humans. Despite the significance of T4P as a potential therapeutic target, key details of their dynamic assembly and underlying molecular mechanisms of pilus extension and retraction remain elusive, primarily due to challenges in isolating intact T4P machines from the bacterial cell envelope. Here, we combine cryo-electron tomography with subtomogram averaging and integrative modelling to resolve in-situ architectural details of the dynamic T4P machine in P.

View Article and Find Full Text PDF

Gram-negative bacteria produce chaperone-usher pathway pili, which are extracellular protein fibers tipped with an adhesive protein that binds to a receptor with stereochemical specificity to determine host and tissue tropism. The outer-membrane usher protein, together with a periplasmic chaperone, assembles thousands of pilin subunits into a highly ordered pilus fiber. The tip adhesin in complex with its cognate chaperone activates the usher to allow extrusion across the outer membrane.

View Article and Find Full Text PDF

Identification of small molecule inhibitors of the Chloracidobacterium thermophilum type IV pilus protein PilB by ensemble virtual screening.

Arch Biochem Biophys

October 2024

Department of Biochemistry, USA; Center for Drug Discovery, USA; Center for Emerging, Zoonotic and Arthropod-borne Pathogens, USA; University Libraries, Virginia Tech, Blacksburg, VA, 24061, USA. Electronic address:

Antivirulence strategy has been explored as an alternative to traditional antibiotic development. The bacterial type IV pilus is a virulence factor involved in host invasion and colonization in many antibiotic resistant pathogens. The PilB ATPase hydrolyzes ATP to drive the assembly of the pilus filament from pilin subunits.

View Article and Find Full Text PDF

Biogenesis and Functionality of Sortase-Assembled Pili in Gram-Positive Bacteria.

Annu Rev Microbiol

November 2024

Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA.

Article Synopsis
  • Pili, or fimbriae, are unique proteins made of linked subunits that are found on the surface of gram-positive bacteria, assembled by an enzyme called sortase.
  • These proteins are important for a variety of functions, including adhesion to surfaces, immune system interaction, and roles in disease-causing abilities of bacteria.
  • The review discusses ongoing research into how pili are formed, their functions, potential applications in vaccines, and the future of this area of study.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!