The role and fate of Jasmonoyl-Phenylalanine (JA-Phe), an understudied conjugate in the jasmonate pathway remain to be unraveled. We addressed here the possibility of JA-Phe oxidative turnover by cytochrome P450s of the CYP94 family. Leaf wounding or fungal infection in Arabidopsis resulted in accumulation of JA-Phe, 12-hydroxyl (12OH-JA-Phe) and 12-carboxyl (12COOH-JA-Phe) derivatives, with patterns differing from those previously described for Jasmonoyl-Isoleucine. In vitro, yeast-expressed cytochromes P450 CYP94B1, CYP94B3 and CYP94C1 differentially oxidized JA-Phe to 12-hydroxyl, 12-aldehyde and 12-carboxyl derivatives. Furthermore, a new aldehyde jasmonate, 12CHO-JA-Ile was detected in wounded plants. Metabolic analysis of CYP94B3 and CYP94C1 loss- and gain-of-function plant lines showed that 12OH-JA-Phe was drastically reduced in cyp94b3 but not affected in cyp94c1, while single or double mutants lacking CYP94C1 accumulated less 12COOH-JA-Phe than WT plants. This, along with overexpressing lines, demonstrates that hydroxylation by CYP94B3 and carboxylation by CYP94C1 accounts for JA-Phe turnover in planta. Evolutionary study of the CYP94 family in the plant kingdom suggests conserved roles of its members in JA conjugate homeostasis and possibly in adaptative functions. Our work extends the range and complexity of JA-amino acid oxidation by multifunctional CYP94 enzymes in response to environmental cues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phytochem.2015.06.027 | DOI Listing |
PLoS One
January 2022
Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
Durian (Durio zibethinus L.) is a major economic crop native to Southeast Asian countries, including Thailand. Accordingly, understanding durian fruit ripening is an important factor in its market worldwide, owing to the fact that it is a climacteric fruit with a strikingly limited shelf life.
View Article and Find Full Text PDFRice (N Y)
June 2019
Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France.
Background: Jasmonate (JA) signaling and functions have been established in rice development and response to a range of biotic or abiotic stress conditions. However, information on the molecular actors and mechanisms underlying turnover of the bioactive jasmonoyl-isoleucine (JA-Ile) is very limited in this plant species.
Results: Here we explored two gene families in rice in which some members were described previously in Arabidopsis to encode enzymes metabolizing JA-Ile hormone, namely cytochrome P450 of the CYP94 subfamily (CYP94, 20 members) and amidohydrolases (AH, 9 members).
Plants (Basel)
January 2016
Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France.
The jasmonic acid (JA) signaling pathway plays important roles in adaptation of plants to environmental cues and in specific steps of their development, particularly in reproduction. Recent advances in metabolic studies have highlighted intricate mechanisms that govern enzymatic conversions within the jasmonate family. Here we analyzed jasmonate profile changes upon Arabidopsis thaliana flower development and investigated the contribution of catabolic pathways that were known to turnover the active hormonal compound jasmonoyl-isoleucine (JA-Ile) upon leaf stress.
View Article and Find Full Text PDFJ Agric Food Chem
April 2016
Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China.
The phytohormone jasmonoyl-L-isoleucine (JA-Ile) is well-known as the key signaling molecule that elicits plant defense responses after insect herbivory. Oxidation, which is catalyzed by the cytochrome P450s of the CYP94 family, is thought to be one of the main catabolic pathways of JA-Ile. In this study, we identified four CYP94B3 homologues in the wild tobacco plant Nicotiana attenuata.
View Article and Find Full Text PDFPlant growth is controlled by intrinsic developmental programmes and environmental cues. Jasmonate (JA) has important roles in both processes, by regulating cell division and differentiation, as well as in defense responses and senescence. We report an increase in rice plant height caused by overexpression of a gene encoding a cytochrome P450 enzyme, CYP94C2b, which promoted deactivation of JA-Ile.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!