A characteristic feature of the active Photosystem II (PSII) complex is a red-shifted low temperature fluorescence emission at about 693nm. The origin of this emission has been attributed to a monomeric 'red' chlorophyll molecule located in the CP47 subunit. However, the identity and function of this chlorophyll remain uncertain. In our previous work, we could not detect the red PSII emission in a mutant of the cyanobacterium Synechocystis sp. PCC 6803 lacking PsbH, a small transmembrane subunit bound to CP47. However, it has not been clear whether the PsbH is structurally essential for the red emission or the observed effect of mutation has been indirectly caused by compromised PSII stability and function. In the present work we performed a detailed spectroscopic characterization of PSII in cells of a mutant lacking PsbH and Photosystem I and we also characterized PSII core complexes isolated from this mutant. In addition, we purified and characterized the CP47 assembly modules containing and lacking PsbH. The results clearly confirm an essential role of PsbH in the origin of the PSII red emission and also demonstrate that PsbH stabilizes the binding of one β-carotene molecule in PSII. Crystal structures of the cyanobacterial PSII show that PsbH directly interacts with a single monomeric chlorophyll ligated by the histidine 114 residue of CP47 and we conclude that this peripheral chlorophyll hydrogen-bonded to PsbH is responsible for the red fluorescence state of CP47. Given the proximity of β-carotene this state could participate in the dissipation of excessive light energy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbabio.2015.07.003 | DOI Listing |
J Biol Chem
January 2023
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA. Electronic address:
Photosystem II (PSII) is the water-splitting enzyme central to oxygenic photosynthesis. To drive water oxidation, light is harvested by accessory pigments, mostly chlorophyll (Chl) a molecules, which absorb visible light (400-700 nm). Some cyanobacteria facultatively acclimate to shaded environments by altering their photosynthetic machinery to additionally absorb far-red light (FRL, 700-800 nm), a process termed far-red light photoacclimation or FaRLiP.
View Article and Find Full Text PDFPlants (Basel)
May 2020
Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia.
(common buckwheat) is an important agricultural non-cereal grain plant. Despite extensive genetic studies, the information on its mitochondrial genome is still lacking. Using long reads generated by single-molecule real-time technology coupled with circular consensus sequencing (CCS) protocol, we assembled the buckwheat mitochondrial genome and detected that its prevalent form consists of 10 circular chromosomes with a total length of 404 Kb.
View Article and Find Full Text PDFBiochim Biophys Acta
October 2015
Institute of Microbiology, Laboratory of Photosynthesis, Centre Algatech, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, Czech Republic.
A characteristic feature of the active Photosystem II (PSII) complex is a red-shifted low temperature fluorescence emission at about 693nm. The origin of this emission has been attributed to a monomeric 'red' chlorophyll molecule located in the CP47 subunit. However, the identity and function of this chlorophyll remain uncertain.
View Article and Find Full Text PDFPlant Physiol
April 2008
Department of Plant Biology , Cornell University, Ithaca, New York 14853, USA.
During maize (Zea mays) C(4) differentiation, mesophyll (M) and bundle sheath (BS) cells accumulate distinct sets of photosynthetic enzymes, with very low photosystem II (PSII) content in BS chloroplasts. Consequently, there is little linear electron transport in the BS and ATP is generated by cyclic electron flow. In contrast, M thylakoids are very similar to those of C(3) plants and produce the ATP and NADPH that drive metabolic activities.
View Article and Find Full Text PDFJ Biol Chem
October 2006
Faculty of Biological Sciences, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic.
Cyanobacteria contain several genes coding for small one-helix proteins called SCPs or HLIPs with significant sequence similarity to chlorophyll a/b-binding proteins. To localize one of these proteins, ScpD, in the cells of the cyanobacterium Synechocystis sp. PCC 6803, we constructed several mutants in which ScpD was expressed as a His-tagged protein (ScpDHis).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!