XRD, SEM and infrared study into the intercalation of sodium hexadecyl sulfate (SHS) into hydrocalumite.

Spectrochim Acta A Mol Biomol Spectrosc

Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001, Australia. Electronic address:

Published: December 2015

Hydrocalumite (CaAl-LDH-Cl) interacted with a natural anionic surfactant, sodium hexadecyl sulfate (SHS), was performed using an intercalation method. To understand the intercalation behavior and characterize the resulting products, powder X-ray diffraction (XRD), scan electron microscopy (SEM) and mid-infrared (MIR) spectroscopy combined with near-infrared (NIR) spectroscopy technique were used. The XRD analysis indicated that SHS was intercalated into CaAl-LDH-Cl successfully, resulting in an expansion of the interlayer (from 0.78 nm to 2.74 nm). The bands of C-H stretching vibrations of SHS were observed in the near-infrared spectra, which indicated that the resulting products were indeed CaAl-LDH-SHS. In addition, the bands of water stretching vibrations and OH groups shifted to higher wavenumbers when SHS was intercalated into CaAl-LDH-Cl interlayer space.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2015.07.014DOI Listing

Publication Analysis

Top Keywords

sodium hexadecyl
8
hexadecyl sulfate
8
sulfate shs
8
shs intercalated
8
intercalated caal-ldh-cl
8
stretching vibrations
8
shs
5
xrd sem
4
sem infrared
4
infrared study
4

Similar Publications

Interaction of a novel dihydroxy dibenzoazacrown (HDTC) with various surfactants of different charges, for example, anionic (sodium dodecylsulfate, SDS), cationic (dodecyl trimethylammonium bromide, DTAB), cationic gemini (butanediyl-1,4-bis(dimethylcetylammonium bromide), 16-4-16), ionic liquid (1-hexadecyl-3-methylimidazolium chloride, CMImCl), and nonionic (polyoxyethylene sorbitan monostearate, Tween-60), has been investigated at a widespread range of surfactant concentrations (including premicellar, micellar, and postmicellar regime) in 15% (v/v) EtOH medium at room temperature. Several experimental techniques, viz., tensiometry, UV-vis spectroscopy, and steady-state fluorimetry, are implemented to explicate these interactions.

View Article and Find Full Text PDF

Enhanced density separation efficiency of microplastics in presence of nonionic surfactants.

Environ Res

December 2024

College of Environmental Science and Engineering, Qingdao University, Qingdao, China. Electronic address:

Microplastics (MPs) recycling, a promising approach to tackle its pollution, faces significant challenges due to the lack of effective separation methods. Herein, the optimized density separation accompanied with nonionic surfactants was employed to purify single MPs species from mixed systems. By adjusting the flotation fluid density, the single MPs can be separated from their mixtures in equal proportions (e.

View Article and Find Full Text PDF

Where do the pyrene molecules reside within the surface active ionic liquid micelles in presence of sodium alginate?

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry, Presidency University, Kolkata 700073, India. Electronic address:

Pyrene fluorescence in aqueous solutions of two surface active ionic liquids, namely, 1-decyl-3-methylimidazolium chloride, and 1-hexadecyl-3-methylimidazolium chloride was investigated in presence of a biopolymer sodium alginate. The principal objective of this study was to explore the influence of the length of the hydrocarbon tails of these surface active ionic liquids on the possible location of the probe (pyrene) molecules in presence of the additive. While an abrupt decrease in the values of the ratio of the intensity of the first vibronic band to that of the third band of pyrene emission spectrum with concentration was observed for 1-hexadecyl-3-methylimidazolium chloride in presence of sodium alginate like the polymer-free case reported earlier, there was a peculiar reversal for 1-decyl-3-methylimidazolium chloride + sodium alginate.

View Article and Find Full Text PDF

Diclofenac Removal by Alkylammonium Clay Minerals Prepared over Microwave Heating.

ACS Omega

December 2024

Universidade Federal da Paraíba, Núcleo de Pesquisa e Extensão - Laboratório de Combustíveis e Materiais (NPE - LACOM), Cidade Universitária s/n - Campus I, 58051-900 João Pessoa, PB, Brazil.

Diclofenac is an emerging contaminant widely detected in water and has had adverse effects on the biota. In this study, the adsorbents were prepared by reacting tetradecyl-(C), hexadecyl-(C), and octadecyltrimethylammonium (C) bromides with sodium vermiculite (Na-Ver) and used for the removal of the first time for diclofenac sodium from aqueous solution. Synthesis was carried out in a microwave-assisted reactor operating at 50 °C for 5 min, using proportions of organic salts in 100 and 200% of the phyllosilicate cation exchange capacity.

View Article and Find Full Text PDF

The adsorbed film of Sodium Hexadecyl Sulfate (SHS) at the dodecane - water interface showed a first-order phase transition to a surface frozen monolayer upon cooling by the lateral van der Waals attraction between their hydrophobic tails and those of hexadecanol (C16OH) incorporated from the dodecane phase. The surface freezing transition of the SHS - C16OH monolayer was then utilized to stabilize an oil-in-water (OW) emulsion. The obtained results were compared to those examined previously for the cetyltrimethylammonium chloride (CTAC) - C16OH surface frozen monolayer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!