The development of inflammatory diseases depends on complex interactions between several genes and various environmental factors. Discovering new genetic risk factors and understanding the mechanisms whereby they influence disease development is of paramount importance. We previously reported that deficiency in Themis1, a new actor of TCR signaling, impairs regulatory T cell (Treg) function and predisposes Brown-Norway (BN) rats to spontaneous inflammatory bowel disease (IBD). In this study, we reveal that the epistasis between Themis1 and Vav1 controls the occurrence of these phenotypes. Indeed, by contrast with BN rats, Themis1 deficiency in Lewis rats neither impairs Treg suppressive functions nor induces pathological manifestations. By using congenic lines on the BN genomic background, we show that the impact of Themis1 deficiency on Treg suppressive functions depends on a 117-kb interval coding for a R63W polymorphism that impacts Vav1 expression and functions. Indeed, the introduction of a 117-kb interval containing the Lewis Vav1-R63 variant restores Treg function and protects Themis1-deficient BN rats from spontaneous IBD development. We further show that Themis1 binds more efficiently to the BN Vav1-W63 variant and is required to stabilize its recruitment to the transmembrane adaptor LAT and to fully promote the activation of Erk kinases. Together, these results highlight the importance of the signaling pathway involving epistasis between Themis1 and Vav1 in the control of Treg suppressive function and susceptibility to IBD development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.1402562 | DOI Listing |
Sci Signal
May 2016
Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France. Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France. Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France. Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France.
The T cell signaling protein Themis1 is essential for the positive and negative selection of thymocytes in the thymus. Although the developmental defect that results from the loss of Themis1 suggests that it enhances T cell receptor (TCR) signaling, Themis1 also recruits Src homology 2 domain-containing phosphatase-1 (SHP-1) to the vicinity of TCR signaling complexes, suggesting that it has an inhibitory role in TCR signaling. We used TCR signaling reporter mice and quantitative proteomics to explore the role of Themis1 in developing T cells.
View Article and Find Full Text PDFJ Immunol
August 2015
Unité Mixte de Recherche, INSERM, U1043, 31300 Toulouse, France; Unité Mixte de Recherche, Centre National de la Recherche Scientifique, U5282, 31300 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, 31300 Toulouse, France; and
The development of inflammatory diseases depends on complex interactions between several genes and various environmental factors. Discovering new genetic risk factors and understanding the mechanisms whereby they influence disease development is of paramount importance. We previously reported that deficiency in Themis1, a new actor of TCR signaling, impairs regulatory T cell (Treg) function and predisposes Brown-Norway (BN) rats to spontaneous inflammatory bowel disease (IBD).
View Article and Find Full Text PDFJ Immunol
July 2014
Medical Research Council, National Institute for Medical Research, London NW7 1AA, United Kingdom; and
Themis1 is a protein implicated in transducing signals from the TCR. Mice deficient in Themis1 show a strong impairment in T cell selection in the thymus and defective T cell activation. The related Themis2 protein is expressed in B cells where it associates with signaling proteins Grb2 and Vav1, and is tyrosine phosphorylated after BCR stimulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!