The hematologic system performs a number of essential functions, including oxygen transport, the execution of the immune response against tumor cells and invading pathogens, and hemostasis (blood clotting). These roles are performed by erythrocytes (red blood cells), leukocytes (white blood cells), and thrombocytes (platelets), respectively. Critically, circadian rhythms are evident in the function of all 3 cell types. In this review, we describe these oscillations, explore their mechanistic bases, and highlight their key implications. Since erythrocytes are anucleate, circadian rhythms in these cells testify to the existence of a nontranscriptional circadian clock. From a clinical perspective, leukocyte rhythms could underlie daily variation in the severity of allergic reactions, the symptoms of chronic inflammatory diseases, and the body's response to infection, while the rhythmic properties of thrombocytes may explain daily fluctuations in the incidence of heart attack and stroke. Consequently, the efficacy of treatments for these conditions is likely to depend on the timing of their administration. Last, we outline preliminary evidence that circadian disruption in the hematologic system could contribute to the deleterious effects of poor diet, shift work, and alcohol abuse on human health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0748730415592729 | DOI Listing |
Cancer Med
February 2025
ERN-EuroBloodNet, Hôpital St Louis/Université Paris 7, Paris, France.
Introduction: Burkitt lymphoma (BL) is a rare and aggressive subtype of non-Hodgkin's lymphoma. Several studies have identified prognostic factors (PFs) for disease progression and mortality among adults with BL. However, there is no consensus on risk stratification based on PFs.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Pediatric and Adolescent Oncology/Hematology, Perth Children's Hospital, Nedlands, WA, Australia.
Gliomas account for nearly 30% of all primary central nervous system (CNS) tumors in children and adolescents and young adults (AYA), contributing to significant morbidity and mortality. The updated molecular classification of gliomas defines molecularly diverse subtypes with a spectrum of tumors associated with age-distinct incidence. In adults, gliomas are characterized by the presence or absence of mutations in isocitrate dehydrogenase (), with mutated (mIDH) gliomas providing favorable outcomes and avenues for targeted therapy with the emergence of mIDH inhibitors.
View Article and Find Full Text PDFEur J Haematol
January 2025
Hematology, St. Paul's Hospital and The University of British Columbia, Vancouver, British Columbia, Canada.
Introduction: Iron overload (IOL) accumulates in myelodysplastic syndromes (MDS) from expanded erythropoiesis and transfusions. Somatic mutations (SM) are frequent in MDS and stratify patient risk. MDS treatments reversing or limiting transfusion dependence are limited.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, Únicas SJD Center, Hospital Sant Joan de Déu, Barcelona, Spain.
Background: Rare diseases (RDs) are a heterogeneous group of complex and low-prevalence conditions in which the time to establish a definitive diagnosis is often too long. In addition, for most RDs, few to no treatments are available and it is often difficult to find a specialized care team.
Objectives: The project "acERca las enfermedades raras" (in English: "bringing RDs closer") is an initiative primary designed to generate a consensus by a multidisciplinary group of experts to detect the strengths and weaknesses in the public healthcare system concerning the comprehensive care of persons living with a RD (PLWRD) in the region of Catalonia, Spain, where a Network of Clinical Expert Units (Xarxa d'Unitats de Expertesa Clínica or XUEC) was created and is being implemented since 2015.
BMC Med
January 2025
Department of Nuclear Medicine, West China Hospital, Sichuan University, Guoxue Alley, Address: No.37, Chengdu City, Sichuan, 610041, China.
Background: This study aimed to construct a radiomics-based imaging biomarker for the non-invasive identification of transformed follicular lymphoma (t-FL) using PET/CT images.
Methods: A total of 784 follicular lymphoma (FL), diffuse large B-cell lymphoma, and t-FL patients from 5 independent medical centers were included. The unsupervised EMFusion method was applied to fuse PET and CT images.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!