Small-amplitude swimmers can self-propel faster in viscoelastic fluids.

J Theor Biol

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom. Electronic address:

Published: October 2015

Many small organisms self-propel in viscous fluids using travelling wave-like deformations of their bodies or appendages. Examples include small nematodes moving through soil using whole-body undulations or spermatozoa swimming through mucus using flagellar waves. When self-propulsion occurs in a non-Newtonian fluid, one fundamental question is whether locomotion will occur faster or slower than in a Newtonian environment. Here we consider the general problem of swimming using small-amplitude periodic waves in a viscoelastic fluid described by the classical Oldroyd-B constitutive relationship. Using Taylor's swimming sheet model, we show that if all travelling waves move in the same direction, the locomotion speed of the organism is systematically decreased. However, if we allow waves to travel in two opposite directions, we show that this can lead to enhancement of the swimming speed, which is physically interpreted as due to asymmetric viscoelastic damping of waves with different frequencies. A change of the swimming direction is also possible. By analysing in detail the cases of swimming using two or three travelling waves, we demonstrate that swimming can be enhanced in a viscoelastic fluid for all Deborah numbers below a critical value or, for three waves or more, only for a finite, non-zero range of Deborah numbers, in which case a finite amount of elasticity in the fluid is required to increase the swimming speed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2015.06.045DOI Listing

Publication Analysis

Top Keywords

swimming
8
viscoelastic fluid
8
travelling waves
8
swimming speed
8
deborah numbers
8
waves
7
small-amplitude swimmers
4
swimmers self-propel
4
self-propel faster
4
viscoelastic
4

Similar Publications

This study aimed to ascertain whether there were any differences in anthropometrics, heart rate, and swimming performance parameters in athletes with intellectual disabilities (ID) before and after a three-month training break. A total of 21 athletes participated in the study, comprising 16 males and 5 females, with a mean age of 28.3 ± 8.

View Article and Find Full Text PDF

: The purpose of this research was to create a peak detection algorithm and machine learning model for use in triathlon. The algorithm and model aimed to automatically measure movement cadence in all three disciplines of a triathlon using data from a single inertial measurement unit and to recognise the occurrence and duration of cycling task changes. : Six triathletes were recruited to participate in a triathlon while wearing a single trunk-mounted measurement unit and were filmed throughout.

View Article and Find Full Text PDF

Gene regulation at the post-transcriptional level is prevalent in all domains of life. In bacteria, ProQ-like proteins have emerged as important RNA chaperones facilitating RNA stability and RNA duplex formation. In the major human pathogen Vibrio cholerae, post-transcriptional gene regulation is key for virulence, biofilm formation, and antibiotic resistance, yet the role of ProQ has not been studied.

View Article and Find Full Text PDF

Background: Schistosoma spp. and other intestinal parasites are common in Ethiopia. During pregnancy, SCH increases the risk of adverse birth outcomes.

View Article and Find Full Text PDF

The effects of triathlon exercise on cardiac function are well documented. While Olympic triathlon (swim-bike-run) remains the standard format, increasing concerns about water quality in natural waterways present ongoing challenges for open-water swimming events, highlighting the potential need to consider alternative formats such as duathlon (run-bike-run) in some circumstances. An additional run may increase the overall metabolic and cardiovascular demand compared with the swim in triathlon, leading to reduced future performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!