Background: Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO2). Phagocytosis of SiO2 in the lung initiates an inflammatory cascade that results in fibroblast proliferation and migration and subsequent fibrosis. Clinical evidence indicates that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation that is characterized by the generation of monocyte chemotactic protein 1 (MCP-1), which induces fibrosis. Pulmonary fibroblast-derived MCP-1 may play a critical role in fibroblast proliferation and migration.

Methods And Results: Experiments using primary cultured adult human pulmonary fibroblasts (HPF-a) demonstrated the following results: 1) SiO2 treatment resulted in the rapid and sustained induction of MCP-1 as well as the elevation of the CC chemokine receptor type 2 (CCR2) protein levels; 2) pretreatment of HPF-a with RS-102895, a specific CCR2 inhibitor, abolished the SiO2-induced increase in cell activation and migration in both 2D and 3D culture systems; and 3) RNA interference targeting CCR2 prevented the SiO2-induced increase in cell migration.

Conclusion: These data demonstrated that the up-regulation of pulmonary fibroblast-derived MCP-1 is involved in pulmonary fibroblast migration induced by SiO2. CCR2 was also up-regulated in response to SiO2, and this up-regulation facilitated the effect of MCP-1 on fibroblasts. Our study deciphered the link between fibroblast-derived MCP-1 and SiO2-induced cell migration. This finding provides novel insight into the potential of MCP-1 in the development of novel therapeutic strategies for silicosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2015.07.002DOI Listing

Publication Analysis

Top Keywords

fibroblast-derived mcp-1
16
pulmonary fibroblast-derived
12
human pulmonary
8
mcp-1
8
cell activation
8
activation migration
8
fibroblast proliferation
8
rapid sustained
8
sio2-induced increase
8
increase cell
8

Similar Publications

Background: Identification of novel cell-based therapy sources has been of great interest in recent years to provide alternative and available therapy options in clinics. Conditioned medium (CM) can be a valuable supply for growth factors, cytokines and chemokines as a source of stem cell secretome. Exploring the role of new CM sources for tissue regeneration might be a promising approach for therapeutic purposes.

View Article and Find Full Text PDF

Novel differences in gene expression and functional capabilities of myofibroblast populations in idiopathic pulmonary fibrosis.

Am J Physiol Lung Cell Mol Physiol

November 2018

School of Medicine and Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin , Ireland.

Idiopathic pulmonary fibrosis (IPF), a chronic progressive interstitial pneumonia, is characterized by excessive fibroproliferation. Key effector cells in IPF are myofibroblasts that are recruited from three potential sources: resident fibroblasts, fibrocytes, and epithelial cells. We hypothesized that IPF myofibroblasts from different sources display unique gene expression differences and distinct functional characteristics.

View Article and Find Full Text PDF

MCPIP1 mediates silica-induced cell migration in human pulmonary fibroblasts.

Am J Physiol Lung Cell Mol Physiol

January 2016

Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China; Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China; and Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China

Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO2). Phagocytosis of SiO2 in the lungs initiates an inflammatory cascade that results in fibroblast proliferation and migration followed by fibrosis. According to previous data from our laboratory, monocyte chemotactic protein-1 (MCP-1) plays a critical role in fibroblast proliferation and migration in conventional two-dimensional (2D) monolayer cultures.

View Article and Find Full Text PDF

Background: Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO2). Phagocytosis of SiO2 in the lung initiates an inflammatory cascade that results in fibroblast proliferation and migration and subsequent fibrosis. Clinical evidence indicates that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation that is characterized by the generation of monocyte chemotactic protein 1 (MCP-1), which induces fibrosis.

View Article and Find Full Text PDF

Adipocytes as immune regulatory cells.

Int Immunopharmacol

June 2013

Department of Otolaryngology, Medical University of South Carolina, Charleston, SC 29425, United States.

Obesity is a chronic inflammatory state and adipocytes are capable of contributing to this inflammation by their production of inflammatory mediators. The present study used fibroblast-derived adipocytes and normal spleen cells as a model to determine if adipocytes can also serve as immune regulatory cells by modulating the functions of conventional immune cells. Media conditioned by the adipocytes stimulated release of the Th1-type cytokines IL-2, IFN-γ and GM-CSF from cultures of normal spleen cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!