Background: Cardiac resynchronization therapy (CRT) is an accepted intervention for chronic heart failure (HF), although approximately 30% of patients are non-responders. The purpose of this study was to determine whether exercise respiratory gas exchange obtained before CRT implantation predicts early response to CRT.
Methods: Before CRT implantation, patients were assigned to either a mild-moderate group (Mod G, n = 33, age 67 ± 10 years) or a moderate-severe group (Sev G, n = 31, age 67 ± 10 years), based on abnormalities in exercise gas exchange. Severity of impaired gas exchange was based on a score from the measures of VE/VCO(2) slope, resting PETCO(2) and change of PETCO(2) from resting to peak. All measurements were performed before and 3 to 4 months after CRT implantation.
Results: Although Mod G did not have improved gas exchange (p > 0.05), Sev G improved significantly (p < 0.05) post-CRT. In addition, Mod G did not show improved right ventricular systolic pressure (RSVP; pre vs post: 37 ± 14 vs 36 ± 11 mm Hg, p > 0.05), yet Sev G showed significantly improved RVSP, by 23% (50 ± 14 vs 42 ± 12 mm Hg, p < 0.05). Both groups had improved left ventricular ejection fraction (p < 0.05), New York Heart Association class (p < 0.05) and quality of life (p < 0.05), but no significant differences were observed between groups (p > 0.05). No significant changes were observed in brain natriuretic peptide in either group post-CRT.
Conclusion: Based on pre-CRT implantation ventilatory gas exchange, subjects with the most impaired values appeared to have more improvement post-CRT, possibly associated with a decrease in RVSP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619172 | PMC |
http://dx.doi.org/10.1016/j.healun.2015.05.016 | DOI Listing |
Plants (Basel)
January 2025
College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China.
The mung bean ( (Linn) Wilczek.) is a major grain crop in China, but its yield is significantly impacted by weeds. However, no pre-emergence herbicides are registered for mung bean fields in the China Pesticide Information Network.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Agrarian and Exact, Universidade Estadual da Paraíba, Catolé do Rocha 58884-000, PB, Brazil.
Freshwater depletion becomes a significant challenge as the population grows and food demand rises. We evaluated the responses of lettuce cultivars () under saline stress in photosynthetic responses, production, and ion homeostasis. We used a randomized block design in a 3 × 5 factorial scheme with five replications-the first factor: three cultivars of curly lettuce: SVR 2005, Simpson, and Grand Rapids.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Viale delle idee 30, 50019 Sesto Fiorentino, Florence, Italy.
Global changes and growing demands have led to the development of new molecular approaches to improve crop physiological performances. Carbonic anhydrase (CA) enzymes, ubiquitous across various life kingdoms, stand out for their critical roles in plant photosynthesis and water relations. We hypothesize that the modulators of human CAs could affect plant physiology.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria.
Microalgae offer a promising alternative for heavy metal removal, and the search for highly efficient strains is ongoing. This study investigated the potential of two microalgae, sp. BGV (Chlorophyta) and Schwabe & Simonsen (Cyanoprokaryota), to bind zinc ions (Zn⁺) and protect higher plants.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
Salt stress is an important factor affecting the growth and development of rice, and prohexadione calcium (Pro-Ca) plays an important role in alleviating rice salt stress and improving rice yield. However, there are few studies on how Pro-Ca improves rice yield under salt stress by regulating the source-sink metabolism. In this study, we used Guanghong 3 (salt-tolerant variety) and Huanghuazhan (salt-sensitive variety) as experimental materials to investigate the dynamic changes in the synthesis and partitioning of nonstructural carbohydrates among source-sink, the dynamic changes in related enzyme activities, the effects of the source-sink metabolism on yield in rice under salt stress and the effect of Pro-Ca during the filling period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!